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Abstract- This paper describes steps toward making 
a collection of robots easily accessible to remote users. 
The current approach is to standardize the interjiace to 
an existing robot, provide connectivity to the Internet 
and provide a Universal Interface to remote users. We 
leverage existing system software and operating systems 
to create an easily programmable, jlexible system. By 
providing the system with certain tools, the experi- 
menter is able to automatically create a record of the 
experiment for  future analysis. 

1.0 Introduction 
In this paper we present a system for controlling 

groups of robots through a World Wide Web interface. 
By leveraging the existing technology infrastructure, we 
show that it is feasible to control robots at a remote loca- 
tion using commonly available user interfaces afforded 
through the WEB. This approach allows the widest pos- 
sible access to robots at remote locations. 

The key benefit is that it may be possible for 
researchers with no access to robotics resources to have 
simple and easy access to robotic resources at other labs. 
This would facilitate a key aspect of the scientific 
method which is currently lacking in much robotic 
work: the systematic reproduction of the results of oth- 
ers. Under our approach, it should become possible for 
researchers to open their labs to outside and independent 
verification of certain results. This paper describes steps 
toward this long term goal. 

Since off-the-shelf robots are becoming more stan- 
dardized, it should be possible for researchers to share 
robots as much as people now share workstations. It is 
our observation that this situation does not exist now. In 
robotics research labs, robots are typically used exclu- 
sively by one or two researchers. Yet even the most ded- 
icated researchers cannot fully utilize a robot or systems 
of robots for 24 hours each day. In most locations, 
robots remain idle throughout most of the day. This situ- 
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ation has led to a large number of under-utilized robots. 
This situation would be tolerable if robots were 

inexpensive and each researcher had access to as many 
types of robots as needed for research. Unfortunately, 
this is not the case. Robots are expensive and few robot- 
icists have sufficient resources to maintain a schedule of 
experimentation which keeps pace with theoretical 
developments. 

This ought to change. Laboratories with the fortune 
of owning valuable hardware should make it a point to 
share what they have; expensive robotics resources 
should be made available to other interested researchers. 

We call this philosophy Universal Access. We advo- 
cate the sharing of robotics resources between experi- 
menters. 

In designing our proposal for a move towards uni- 
versal access, we identified the following problems in 
the current situation: 

Limited public availability of existing robots - most 
existing robots are typically not available to 
researchers outside the laboratories. That is, robots 
are usually not wired to a world wide research net- 
work, and researchers have no means of accessing 
the robots unless they are physically in the laborato- 
ries. 
A lack of standardized experimental facilities - to 
perform scientific experiments good monitoring 
and metrology equipment are needed. For example, 
in a motion control experiment the trail followed by 
the robot needs to be recorded accurately and 
returned in a form easily usable by scientific visual- 
ization software packages. In addition, it would be 
valuable to have a coordinated video and data 
record. 
Unfamiliar development environments - researchers 
currently have to adapt to development environ- 
ments provided by robot manufacturers, which are 
often unfamiliar and require significant amount of 
time to master. 

Incorporating ideas for the removal of these prob- 
lems, we developed a robotic testbed called the W3R3 
system. We give a brief overview of the system here. 
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The basic robot we started with was the R3 from IS 
Robotics. This robot has a wide range of sensing capa- 
bility as well as the ability to grip objects. We felt that 
this robot was representative of the types of robots 
which other researchers might wish to have at their dis- 
posal. 

The R3s were augmented with Linux PCs. This 
augmentation gave the robot the ability to be connected 
directly to the Internet. Next we developed a vision 
based metrology system to track the robots as they 
moved. This system provides the ability to monitor the 
progress of an experiment. 

In addition, we built a Web interface which allows 
easy remote access to our site from virtually any plat- 
forms. 

Finally, we have begun to augment the W3R3 with 
a status and safety monitoring system which assists in 
the maintenance of the robots. 

In this paper we describe in detail the architecture 
of the system. 

2.0 Previous Work 
There is a growing number of Web accessible 

robots. One of the most popular sites has been the Mer- 
cury project and the Robotic Tele-garden project [7,8] at 
USC. In this environment the researchers where able to 
allow virtually unrestricted access to robotic manipula- 
tors capable of fixed tasks. 

The manipulators where interfaced to the Internet 
and access to them was gained through a Web interface. 

The Mercury project consists of a robot manipula- 
tor moving above a section of earth known to contain 
artifacts. There is a downward-pointing camera attached 
to the distal end of the robot arm. By clicking on an 
image or buttons on the Web page, users can make the 
robot move along the X-Y axes and the camera along 
the Z axis. In real-time operation, GIF images of the 
camera view are updated on the Web page, and a session 
is logged as an MPEG movie; the only sensory data is 
the energy level. This project has been decommissioned 
since March 31,1995. 

The Australia’s Telerobot On The Web project at the 
University of Western Australia [9] challenges users to 
control the parallel-jaw grippers of a six-axis manipula- 
tor to pick up blocks on a table. Through a fill-out form, 
users can submit desired (X,Y,Z) coordinates, and roll, 
pitch, yaw actions. A fixed camera gives a side view of 
the arena, and the image is updated when the user com- 
mand is submitted and executed. 

The Bradford Robotic Telescope [ 101 allows users 
to work either in batch mode or in real-time mode. The 
user describes what he wishes to observe and the tele- 
scope moves accordingly. One of the strong features of 

this project is the good implementation of user access 
control: users must register, login (passwords can be 
changed via e-mail), and submit jobs. Furthermore, jobs 
are prioritized; only those with the highest priority arc 
allowed real-time control of the telescope. 

These projects are precursors to the work presented 
here. In these works, the researchers have begun to 
address the question of connectivity and reliability. 

A key element missing is the ability to program the 
robots. Allowing programmability incurs certain costs 
however. The number of people with access to the Web 
is far greater than the number of people who can pro- 
gram a robot productively. To allow programmability, it 
is necessary to restrict access to trusted users. This is the 
approach we have taken. 

3.0 Approach 
Our approach is to increase connectivity, offer sup- 

port for experimental development and execution. 

3.1 Increasing Connectivity 
As mentioned earlier the R3 is used as the robot 

platform. The processors on the R3 robots run the Venus 
operating system, which does not support network con- 
nectivity. In addition, programming the R3 requires 
downloading code from a host computer via a special- 
ized serial interface. These two factors limit the connec- 
tivity and programmability for remote experimentation, 
since remote users cannot download control programs 
onto the robots using standard network applications. 

A solution to this was found by adding a Linux 
notebook computer. This provides an interface between 
the robot and the rest of the world, and lays a solid 
development foundation. 

For example, we were then able to add a Web inter- 
face to the system, which provides programmability 
with Unix shell scripts. Remote users can thus program 
the robots and get near real-time feedback from over- 
head video cameras mounted over the R3s’ work area. 

3.2 Experimental development and Execu- 
tion Support. 

Several tools were developed to assist in develop- 
ment. First a 3-D simulator was developed. At this point, 
the simulator runs on platforms supporting Open Inven- 
tor. Using this simulator, investigators can begin to 
debug their algorithms before moving onto real hard- 
ware. 

Secondly, an Applications Programming Interface 
(API) was developed which allows researchers to write 
programs that control robot actuators and receive feed- 
back from the robots sensors. Although programming 
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typically involves some communication between differ- 
ent computers, the underlying networking is transparent 
to the user. This is achieved by building our system on 
top of PVM (Parallel Virtual Machine), which simplifies 
distributed systems programming with heterogeneous 
architectures. 

Thirdly, a metrology system was constructed. This 
system tracks each robot with a frequency of 10 hz. 
Thus global positioning information is available to the 
robots. 

3.3 Embodiment in W3R3 
The elements described above were combined in 

the W3R3 system. W3R3 refers to the acronym for the 
World Wide Web and the name of the robots ‘R3.’ The 
two subsystems in W3R3 include R3Net and R3Web. 
R3Net consists of the software and hardware needed to 
implement lower-level connectivity and R3Web refers to 
the higher-level Web interface. This is shown in figure 1. 

4.0 W3R3 Architecture 
We now examine in more detail the design of 

W3R3. 

4.1 The Original R3 Platform 
The robots used in the W3R3 project are IS Robot- 

ics R3 robots. The R3 robots are small, autonomous 
mobile robot about 30 cm both in diameter and in 
height. Each R3 carries 68332 and 68HCll microcon- 
trollers which runs the Venus operating system. User 
programs are ran in 1 MB of non-volatile RAM. 

The R3 robot carries a rich set of sensors including 
infrared proximity sensors, bump sensors, shaft encod- 
ers, and power status indicators. A user input panel is 
also provided for programs that requires user interac- 
tion. The robot moves using a differential drive and can 
manipulate objects using a force-sensing gripper sub- 
system. Power is supplied by rechargeable NiCad batter- 
ies. The robot has the capability to detect low power 
conditions and recharge under software control when 
attached to an external power source. 

The R3 runs an operating system called Venus. The 
runtime software system consists of three pieces: the 
assembly language kernel, the C function libraries and 
the L runtime libraries. The assembly language kernel 
consists of low level routines which interface to inter- 
rupts and handle processor reset cycle. The system is 
currently designed with L as its main programming lan- 
guage. L supports multi-tasking and can call the C rou- 
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Figure 2. W3R3 Hardware Overview. 

tines to manipulate the hardware. Simple processes are 
implemented outside of L via a round robin scheduler 
which interrupts 1024 times a second. Thirty two of 
such processes can be loaded and therefore each process 
gets executed thirty two times per second. 

While the R3 robot provides many of the necessary 
capabilities for collaborative robotics, it needed several 
augmentations for our purpose. First of all, it needs an 
application development environment accessible 
remotely. With the default setup of the R3, the program- 
mer must write their program on a Macintosh, then 
download it to the R3’s battery-backed, RAM using a 
special serial link. Whenever changes are made to the 
application, the programmer must repeat this process, 
which is tedious, time-consuming, and not possible 
remotely. Second and probably the most important 
shortcoming is that the original R3 platform needs a 
higher-bandwidth and more reliable communication 
mechanism between robots. The original R3 setup uses 
Proxim radio modems as a wireless serial link between 
each R3 and its basestation with a data rate of 19.2 
Kbps. Not only does the throughput degrades when the 
number of robot increases, it was also shown to be unre- 
liable in sending and receiving data. 

4.2 The Upgraded R3 (R3+) 
To overcome the two problems mentioned earlier, 

we examined several ways of modifying the R3. An 
alternative we chose was to add TCP/IP on the original 
R3 since TCP/IP has long been proven to be a fast and 

reliable communication mechanism. While it is possible 
to write a TCP/IP stack for almost any platform we took 
a more expedient path. Each R3 has been augmented 
with a notebook computer carrying a 486DX4-100 pro- 
cessor, 8 MB of RAM, and 400 MB of mass storage. 
The notebook computer runs Linux. Although Linux is 
public domain software, it has proven to be very reli- 
able. In addition, the Linux source code is freely avail- 
able, making kernel-level modifications possible. 

The notebook computer communicates with the 
host R3 via a RS-232 serial link running at 19.2 Kbps. 
The host R3 sends out sensor information through the 
serial link at a rate of 32Hz in correspondence to the 
Venus scheduler execution rate. The notebook computer 
is responsible for receiving this information and sending 
them to user applications when requested. The notebook 
computer is also responsible for receiving robot com- 
mands from user applications and sending it to the host 
R3 via the serial link. 

4.3 Communications 
As shown in figure 2, the physical network of the 

R3Net testbed consists of a wireless network using 
AT&T/NCR’s WaveLAN and an Ethernet LAN. The 
WaveLAN network runs in the 915MHz range and pro- 
vides a bandwidth of up to two Mbitls. This wireless 
network is actually an IP subnet consisting of 10 R3+ 
robots and a basestation. Each R3+ carries a WaveLAN1 
PCMCIA network adaptor, and the basestation, which is 
also connected to a wired network, carries an ISA bus 
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Figure 3: R3Net communications model. The dashed line represents the 
network communications between the R3 applications and R3 Daemon. 

WavePoint adaptor and acts as a gateway to the Internet. 
The setup with a separate IP subnet not only gives a 
sense of autonomy, it also reduces unnecessary traffic, 
which makes communication between robots more effi- 
cient. 

The logical network of the R3Net includes the R3 
wireless network and computers that wishes to commu- 
nicate with the R3+ robots. This setup is accomplished 
by another public domain software package called PVM 
(Parallel Virtual Machine). The PVM system is an inte- 
grated set of software tools and libraries that emulates a 
general-purpose, flexible, heterogeneous concurrent 
computing framework on interconnected computers of 
varied architecture. With PVM, any computer on the 
Internet can be part of the R3Net logical network. 
Applications that wishes to communicate with the R3+ 
robots can be running anywhere inside this logical net- 
work. 

The communication model of the R3Net is based on 
the cliendserver paradigm (shown in figure 3), more 
specifically, a two-level Remote Procedure Call (RPC) 
model. RPC uses a request-and-reply communication 
model. The client sends a request message to the server 
which returns a reply message. In the R3Net, the “real” 
server is the Venus operating system running on the host 
R3. The “real” clients of the R3Net are applications that 
wishes to communicate with the robots. To facilitate 
reliable communications and easy application program- 
ming, a relay server, r3d, is put in between the “real” cli- 
ents and servers. R3d acts as a relay station between the 
clients and the host R3, it receives commands from the 
clients, sends them to the host R3, then receives replies 
from the host R3, and return them to the clients. This 
setup hides all the network communications from the 
researchers and allow them to focus on their algorithms. 

4.4 R3 Application Programming Inter- 
face (API) 

With the R3s upgraded and the networks in place, a 
C++ API has been implemented in order to provide 
researchers a high-level programming interface for 

implementing their algorithms. 
The C++ API implements a R3 object which emu- 

lates the real R3 robot. Methods such as LiftGripper and 
LowerGripper are provided so the researchers can easily 
control the robots within their application. 

When a R3 method is called, the R3 object then col- 
lects the necessary information into one message, sends 
the message to the r3d running on the R3, and wait for a 
reply, When a reply is received from the r3d, it then 
returns the status to the user. All the background pro- 
cessing are transparent from the application’s point of 
view. The application only knows that it called a R3 
method and the method returned a value. 

In order to trap errors such as lost messages, a time- 
out mechanism has been incorporated into the API. 
After 100 milliseconds, if no reply has been received, 
then the R3 methods will return an error. 

Figure 4 shows an example R3 program which uses 
the R3++ API to control the forward movement of the 
robot. 

4.5 R3Daemon 
As mentioned previously, the R3 daemon is a relay 

station between the “real” clients and servers. It basi- 
cally relays client requests to the host R3 (the server) 
and relays server replies to the clients. 

The R3 daemon is implemented as a multi-process 
server: a PVM process and a serial process. The PVM 
process is responsible for waiting for requests from cli- 
ents, and the serial process is responsible for constantly 
updating a R3 object with sensor and actuator informa- 
tion from the host R3. The serial process is also respon- 
sible for sending commands to the host R3 when such 
requests arrive. 

In addition to these functions, the R3 daemon is 
also responsible for controlling the access to the host 
R3. Since it is unreasonable for two application pro- 
grams to control the same host R3 at the same time, the 
R3 daemon must provide a registration mechanism for 
the client applications. When a R3 object instance is cre- 
ated for a certain robot, it transparently sends the appro- 
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#include <iostream.h> 
#include <R3++.h> 
#include <stdlib.h> 

main(int argc, char **argv) 
{ 
if (argc != 3) { 

cout << "Usage: " << argv[O] 
<< " rid velocity" 
<< endl; 

exit ( -1 ) : 
1 

int rid = atoi(argv[l]); 
int veloc = atoi(argv[2]); 

/ /  Instantiates an R3 object 
R3 r3(rid, R3-ACCESS-COMMAND); 

/ /  Exit if control to the robot 
/ /  is denied (maybe another app 
/ /  is controlling the robot.) 
if (r3.ErrnoO == 

R3-REGISTRATION-DENIED) 
exit (-1) ; 

/ /  Move the robot forward 
r3.MoveForward(veloc); 

1 

Figure 4: Example R3 program that uses the 
R3++ API to control the movement of the robots. 

priate R3 daemon a registration message. The R3 
daemon allows the registration only when no other R3 
object instance is currently controlling the robot. 

4.6 R3Net Monitor 
In order to provide maintenance assistance and in 

general to monitor the system health, a R3Net Health 
and Safety Monitor is being developed. 

This monitor will watch the R3Net system and 
update an R3 information database with status of bat- 
tery, serial link, physical network, host R3, and tracking. 
When necessary, the monitor will take control of the 
robot and try to fix the problem. For example, if the bat- 
tery of a certain robot is getting low, the monitor will 
guide the robot to a recharging station and turn on its 
recharging circuitry. When the robot finishes recharging, 
the monitor will return the robot to its home position. 

4.7 Vision-based Global Positioning Sys- 
tem (VGPS) 

An essential element of the R3Net testbed is the 
Vision-based Global Positioning System (VGPS). It 

provides accurate information at approximately lOHz on 
the position and orientation of each R3 being tracked. 
Without VGPS it would be very difficulty to implement 
motion control algorithms such as a global "move to" 
function. VGPS is also needed for the R3s to find the 
recharging station, VGPS hardware include CCD wide- 
angle video cameras that are mounted over the R3 arena, 
and a VGPS server which digitizes images from the 
cameras and performs the tracking computation. 

Briefly, the system works as follows: 1) Based on 
previous measurements, the predictive stage of a Linear 
Kalman Filter estimates a new position of the robots 2) 
Based on this prediction, regions of interests are estab- 
lished at the estimated position of the target features on 
the robots 3) Small regions of interest, encompassing an 
individual robot's targets are acquired, and segmented. 
The position of each target in the image plane is estab- 
lished. 4) A model of the robot and its target is matched 
to the acquired target positions. This establishes a mea- 
sured position of the robots 5) The measured position of 
the robots and previous estimates of the robot's position 
are combined using the estimation stage of a Linear Kal- 
man filter 6) The procedure is repeated again from step 
1. 

The use of this kind of active vision approach sig- 
nificantly reduces the amount of computation needed to 
track the robots. By scanning only certain small regions 
of interest, a substantial improvement in tracking perfor- 
mance is realized. 

Since the robots are tracked in global coordinates, it 
is relatively easy to use multiple cameras to track the 
robots. When a robot vanishes from one cameras field of 
view, it will be picked up by another camera. By using a 
model of the camera, and the predicted position of the 
camera in world coordinates, it is easy to predict which 
camera is able to 'see' the robot at any particular time. 

While VGPS is running it maintains a database of 
robot positions. At constant intervals it sends informa- 
tion using the R3 API to each individual R3 Daemon, 
which in turn updates their local database. When users 
make R3 API calls to query the position information, the 
corresponding R3 Daemon replies with the most current 
position. In this arrangement, VGPS is also transparent 
to the user applications. 

4.8 R3Web 
In order to provide a uniform interface to all users, 

we implemented a graphical user interface (GUI) based 
on the current available World-Wide-Web (WWW) 
facilities, e.g. WWW servers such as httpd, and brows- 
ers such as Netscape. The main reason to implement our 
GUI using the WWW is because WWW facilities are 
widely available and therefore maximize the accessibil- 
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#! / b m / s h  

MoveTo 1 5 -0.5 -1.6 
SetMotor 1 3 230 
sleep Is 
MoveTo 1 5 -1.5 -1.6 
Stopwheels 1 

Figure 5 :  Example shell script that moves the 
robot the recharging station. 

ity to our systems. Also, with the recent introduction of 
the Java language, we will be able to provide all the nec- 
essary features that a standard GUI package, e.g. Motif, 
can provide. 

The R3Web setup consists of a main Web server 
and two camera servers. The main server is responsible 
for providing information about our W3R3 project, 
QuickTime movies of our demos, and script submission. 
The two camera servers are responsible for serving 
images from the two overhead cameras to the users con- 
tinuously. 

Our WWW-based GUI currently provides the fol- 
lowing capabilities: (i) QuickTime movies of various 
demos, (ii) submission of simple shell scripts with com- 
mands such as Forward, LiftGripper, (iii) near-real-time 
view of the R3 arena on the web page (figure 7). 

Robot controlling is currently supported in three 
levels: level 0, level 1, and level 2. Level 0 support 
allows users to view QuickTime movies from our web 
page and control a single robot by selecting commands 
from our experiments web page. Level 1 and Level 2 
supports are for subscribed users only. Level 1 support 
allows users to submit scripts via the web to control the 
robots. The user will also get instant feedback of the 
script they sent. Figure 5 shows an example shell script 
that could be sent via the web interface. With level 2 
support, an account is created for the users on our sys- 
tem. They will be able to login and write R3 applica- 
tions using the R3 API. 

5.0 Discussion and Future Work 
In the above sections we detailed how we have 

begun to facilitate universal access to a robotics lab. If 
this paradigm sees widespread usage, the robotics com- 
munity should realize a greater efficiency in the use of 
its resources, and hopefully a more rapid advance 
toward its collective goal. 

The next step in our implementation will involve 
making the R3Net monitor system operational. This will 
allow rapid debugging of hardware faults in the system. 

The final tool which will be developed is automatic 
logging of experimental data. This would include cre- 

Figure 7. View of the arena from the web inter- 
face. 

ation of a compressed MPEG (or equivalent) movie 
from multiple cameras and synchronization of sensor 
data and out-going commands. 
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