
Towards Universal Access to Robotic Resources*
Jian L. Zhen M. Anthony Lewis Kar-Han Tan

jlz@cs.ucla.edu tlewis@cs.ucla.edu tankh@herd.cs.ucla.edu

The Commotion Lab
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095-1596

Abstract- This paper describes steps toward making
a collection of robots easily accessible to remote users.
The current approach is to standardize the interjiace to
an existing robot, provide connectivity to the Internet
and provide a Universal Interface to remote users. We
leverage existing system software and operating systems
to create an easily programmable, jlexible system. By
providing the system with certain tools, the experi-
menter is able to automatically create a record of the
experiment for future analysis.

1.0 Introduction
In this paper we present a system for controlling

groups of robots through a World Wide Web interface.
By leveraging the existing technology infrastructure, we
show that it is feasible to control robots at a remote loca-
tion using commonly available user interfaces afforded
through the WEB. This approach allows the widest pos-
sible access to robots at remote locations.

The key benefit is that it may be possible for
researchers with no access to robotics resources to have
simple and easy access to robotic resources at other labs.
This would facilitate a key aspect of the scientific
method which is currently lacking in much robotic
work: the systematic reproduction of the results of oth-
ers. Under our approach, it should become possible for
researchers to open their labs to outside and independent
verification of certain results. This paper describes steps
toward this long term goal.

Since off-the-shelf robots are becoming more stan-
dardized, it should be possible for researchers to share
robots as much as people now share workstations. It is
our observation that this situation does not exist now. In
robotics research labs, robots are typically used exclu-
sively by one or two researchers. Yet even the most ded-
icated researchers cannot fully utilize a robot or systems
of robots for 24 hours each day. In most locations,
robots remain idle throughout most of the day. This situ-

* This research was supported by NSF CDA-9303148
and matching funds from the UCLA School of Engineering
and Applied Science.

Proc. IROS 96
0-7803-3213-X/96/ $5 .000 1996 IEEE

ation has led to a large number of under-utilized robots.
This situation would be tolerable if robots were

inexpensive and each researcher had access to as many
types of robots as needed for research. Unfortunately,
this is not the case. Robots are expensive and few robot-
icists have sufficient resources to maintain a schedule of
experimentation which keeps pace with theoretical
developments.

This ought to change. Laboratories with the fortune
of owning valuable hardware should make it a point to
share what they have; expensive robotics resources
should be made available to other interested researchers.

We call this philosophy Universal Access. We advo-
cate the sharing of robotics resources between experi-
menters.

In designing our proposal for a move towards uni-
versal access, we identified the following problems in
the current situation:

Limited public availability of existing robots - most
existing robots are typically not available to
researchers outside the laboratories. That is, robots
are usually not wired to a world wide research net-
work, and researchers have no means of accessing
the robots unless they are physically in the laborato-
ries.
A lack of standardized experimental facilities - to
perform scientific experiments good monitoring
and metrology equipment are needed. For example,
in a motion control experiment the trail followed by
the robot needs to be recorded accurately and
returned in a form easily usable by scientific visual-
ization software packages. In addition, it would be
valuable to have a coordinated video and data
record.
Unfamiliar development environments - researchers
currently have to adapt to development environ-
ments provided by robot manufacturers, which are
often unfamiliar and require significant amount of
time to master.

Incorporating ideas for the removal of these prob-
lems, we developed a robotic testbed called the W3R3
system. We give a brief overview of the system here.

1400

mailto:jlz@cs.ucla.edu
mailto:tlewis@cs.ucla.edu
mailto:tankh@herd.cs.ucla.edu

The basic robot we started with was the R3 from IS
Robotics. This robot has a wide range of sensing capa-
bility as well as the ability to grip objects. We felt that
this robot was representative of the types of robots
which other researchers might wish to have at their dis-
posal.

The R3s were augmented with Linux PCs. This
augmentation gave the robot the ability to be connected
directly to the Internet. Next we developed a vision
based metrology system to track the robots as they
moved. This system provides the ability to monitor the
progress of an experiment.

In addition, we built a Web interface which allows
easy remote access to our site from virtually any plat-
forms.

Finally, we have begun to augment the W3R3 with
a status and safety monitoring system which assists in
the maintenance of the robots.

In this paper we describe in detail the architecture
of the system.

2.0 Previous Work
There is a growing number of Web accessible

robots. One of the most popular sites has been the Mer-
cury project and the Robotic Tele-garden project [7,8] at
USC. In this environment the researchers where able to
allow virtually unrestricted access to robotic manipula-
tors capable of fixed tasks.

The manipulators where interfaced to the Internet
and access to them was gained through a Web interface.

The Mercury project consists of a robot manipula-
tor moving above a section of earth known to contain
artifacts. There is a downward-pointing camera attached
to the distal end of the robot arm. By clicking on an
image or buttons on the Web page, users can make the
robot move along the X-Y axes and the camera along
the Z axis. In real-time operation, GIF images of the
camera view are updated on the Web page, and a session
is logged as an MPEG movie; the only sensory data is
the energy level. This project has been decommissioned
since March 31,1995.

The Australia’s Telerobot On The Web project at the
University of Western Australia [9] challenges users to
control the parallel-jaw grippers of a six-axis manipula-
tor to pick up blocks on a table. Through a fill-out form,
users can submit desired (X,Y,Z) coordinates, and roll,
pitch, yaw actions. A fixed camera gives a side view of
the arena, and the image is updated when the user com-
mand is submitted and executed.

The Bradford Robotic Telescope [101 allows users
to work either in batch mode or in real-time mode. The
user describes what he wishes to observe and the tele-
scope moves accordingly. One of the strong features of

this project is the good implementation of user access
control: users must register, login (passwords can be
changed via e-mail), and submit jobs. Furthermore, jobs
are prioritized; only those with the highest priority arc
allowed real-time control of the telescope.

These projects are precursors to the work presented
here. In these works, the researchers have begun to
address the question of connectivity and reliability.

A key element missing is the ability to program the
robots. Allowing programmability incurs certain costs
however. The number of people with access to the Web
is far greater than the number of people who can pro-
gram a robot productively. To allow programmability, it
is necessary to restrict access to trusted users. This is the
approach we have taken.

3.0 Approach
Our approach is to increase connectivity, offer sup-

port for experimental development and execution.

3.1 Increasing Connectivity
As mentioned earlier the R3 is used as the robot

platform. The processors on the R3 robots run the Venus
operating system, which does not support network con-
nectivity. In addition, programming the R3 requires
downloading code from a host computer via a special-
ized serial interface. These two factors limit the connec-
tivity and programmability for remote experimentation,
since remote users cannot download control programs
onto the robots using standard network applications.

A solution to this was found by adding a Linux
notebook computer. This provides an interface between
the robot and the rest of the world, and lays a solid
development foundation.

For example, we were then able to add a Web inter-
face to the system, which provides programmability
with Unix shell scripts. Remote users can thus program
the robots and get near real-time feedback from over-
head video cameras mounted over the R3s’ work area.

3.2 Experimental development and Execu-
tion Support.

Several tools were developed to assist in develop-
ment. First a 3-D simulator was developed. At this point,
the simulator runs on platforms supporting Open Inven-
tor. Using this simulator, investigators can begin to
debug their algorithms before moving onto real hard-
ware.

Secondly, an Applications Programming Interface
(API) was developed which allows researchers to write
programs that control robot actuators and receive feed-
back from the robots sensors. Although programming

1401

I

I R3Web

Web Browser Web Browser
viewing viewing

I
R3++ Library

R3Net Monitor User Conaol
I I
I I I

typically involves some communication between differ-
ent computers, the underlying networking is transparent
to the user. This is achieved by building our system on
top of PVM (Parallel Virtual Machine), which simplifies
distributed systems programming with heterogeneous
architectures.

Thirdly, a metrology system was constructed. This
system tracks each robot with a frequency of 10 hz.
Thus global positioning information is available to the
robots.

3.3 Embodiment in W3R3
The elements described above were combined in

the W3R3 system. W3R3 refers to the acronym for the
World Wide Web and the name of the robots ‘R3.’ The
two subsystems in W3R3 include R3Net and R3Web.
R3Net consists of the software and hardware needed to
implement lower-level connectivity and R3Web refers to
the higher-level Web interface. This is shown in figure 1.

4.0 W3R3 Architecture
We now examine in more detail the design of

W3R3.

4.1 The Original R3 Platform
The robots used in the W3R3 project are IS Robot-

ics R3 robots. The R3 robots are small, autonomous
mobile robot about 30 cm both in diameter and in
height. Each R3 carries 68332 and 68HCll microcon-
trollers which runs the Venus operating system. User
programs are ran in 1 MB of non-volatile RAM.

The R3 robot carries a rich set of sensors including
infrared proximity sensors, bump sensors, shaft encod-
ers, and power status indicators. A user input panel is
also provided for programs that requires user interac-
tion. The robot moves using a differential drive and can
manipulate objects using a force-sensing gripper sub-
system. Power is supplied by rechargeable NiCad batter-
ies. The robot has the capability to detect low power
conditions and recharge under software control when
attached to an external power source.

The R3 runs an operating system called Venus. The
runtime software system consists of three pieces: the
assembly language kernel, the C function libraries and
the L runtime libraries. The assembly language kernel
consists of low level routines which interface to inter-
rupts and handle processor reset cycle. The system is
currently designed with L as its main programming lan-
guage. L supports multi-tasking and can call the C rou-

1402

Figure 2. W3R3 Hardware Overview.

tines to manipulate the hardware. Simple processes are
implemented outside of L via a round robin scheduler
which interrupts 1024 times a second. Thirty two of
such processes can be loaded and therefore each process
gets executed thirty two times per second.

While the R3 robot provides many of the necessary
capabilities for collaborative robotics, it needed several
augmentations for our purpose. First of all, it needs an
application development environment accessible
remotely. With the default setup of the R3, the program-
mer must write their program on a Macintosh, then
download it to the R3’s battery-backed, RAM using a
special serial link. Whenever changes are made to the
application, the programmer must repeat this process,
which is tedious, time-consuming, and not possible
remotely. Second and probably the most important
shortcoming is that the original R3 platform needs a
higher-bandwidth and more reliable communication
mechanism between robots. The original R3 setup uses
Proxim radio modems as a wireless serial link between
each R3 and its basestation with a data rate of 19.2
Kbps. Not only does the throughput degrades when the
number of robot increases, it was also shown to be unre-
liable in sending and receiving data.

4.2 The Upgraded R3 (R3+)
To overcome the two problems mentioned earlier,

we examined several ways of modifying the R3. An
alternative we chose was to add TCP/IP on the original
R3 since TCP/IP has long been proven to be a fast and

reliable communication mechanism. While it is possible
to write a TCP/IP stack for almost any platform we took
a more expedient path. Each R3 has been augmented
with a notebook computer carrying a 486DX4-100 pro-
cessor, 8 MB of RAM, and 400 MB of mass storage.
The notebook computer runs Linux. Although Linux is
public domain software, it has proven to be very reli-
able. In addition, the Linux source code is freely avail-
able, making kernel-level modifications possible.

The notebook computer communicates with the
host R3 via a RS-232 serial link running at 19.2 Kbps.
The host R3 sends out sensor information through the
serial link at a rate of 32Hz in correspondence to the
Venus scheduler execution rate. The notebook computer
is responsible for receiving this information and sending
them to user applications when requested. The notebook
computer is also responsible for receiving robot com-
mands from user applications and sending it to the host
R3 via the serial link.

4.3 Communications
As shown in figure 2, the physical network of the

R3Net testbed consists of a wireless network using
AT&T/NCR’s WaveLAN and an Ethernet LAN. The
WaveLAN network runs in the 915MHz range and pro-
vides a bandwidth of up to two Mbitls. This wireless
network is actually an IP subnet consisting of 10 R3+
robots and a basestation. Each R3+ carries a WaveLAN1
PCMCIA network adaptor, and the basestation, which is
also connected to a wired network, carries an ISA bus

1403

commandinfo
user input request -
user output commandinfo

------ ----

reply

Command
Request

Daemon Robot

Info
Reply

Figure 3: R3Net communications model. The dashed line represents the
network communications between the R3 applications and R3 Daemon.

WavePoint adaptor and acts as a gateway to the Internet.
The setup with a separate IP subnet not only gives a
sense of autonomy, it also reduces unnecessary traffic,
which makes communication between robots more effi-
cient.

The logical network of the R3Net includes the R3
wireless network and computers that wishes to commu-
nicate with the R3+ robots. This setup is accomplished
by another public domain software package called PVM
(Parallel Virtual Machine). The PVM system is an inte-
grated set of software tools and libraries that emulates a
general-purpose, flexible, heterogeneous concurrent
computing framework on interconnected computers of
varied architecture. With PVM, any computer on the
Internet can be part of the R3Net logical network.
Applications that wishes to communicate with the R3+
robots can be running anywhere inside this logical net-
work.

The communication model of the R3Net is based on
the cliendserver paradigm (shown in figure 3), more
specifically, a two-level Remote Procedure Call (RPC)
model. RPC uses a request-and-reply communication
model. The client sends a request message to the server
which returns a reply message. In the R3Net, the “real”
server is the Venus operating system running on the host
R3. The “real” clients of the R3Net are applications that
wishes to communicate with the robots. To facilitate
reliable communications and easy application program-
ming, a relay server, r3d, is put in between the “real” cli-
ents and servers. R3d acts as a relay station between the
clients and the host R3, it receives commands from the
clients, sends them to the host R3, then receives replies
from the host R3, and return them to the clients. This
setup hides all the network communications from the
researchers and allow them to focus on their algorithms.

4.4 R3 Application Programming Inter-
face (API)

With the R3s upgraded and the networks in place, a
C++ API has been implemented in order to provide
researchers a high-level programming interface for

implementing their algorithms.
The C++ API implements a R3 object which emu-

lates the real R3 robot. Methods such as LiftGripper and
LowerGripper are provided so the researchers can easily
control the robots within their application.

When a R3 method is called, the R3 object then col-
lects the necessary information into one message, sends
the message to the r3d running on the R3, and wait for a
reply, When a reply is received from the r3d, it then
returns the status to the user. All the background pro-
cessing are transparent from the application’s point of
view. The application only knows that it called a R3
method and the method returned a value.

In order to trap errors such as lost messages, a time-
out mechanism has been incorporated into the API.
After 100 milliseconds, if no reply has been received,
then the R3 methods will return an error.

Figure 4 shows an example R3 program which uses
the R3++ API to control the forward movement of the
robot.

4.5 R3Daemon
As mentioned previously, the R3 daemon is a relay

station between the “real” clients and servers. It basi-
cally relays client requests to the host R3 (the server)
and relays server replies to the clients.

The R3 daemon is implemented as a multi-process
server: a PVM process and a serial process. The PVM
process is responsible for waiting for requests from cli-
ents, and the serial process is responsible for constantly
updating a R3 object with sensor and actuator informa-
tion from the host R3. The serial process is also respon-
sible for sending commands to the host R3 when such
requests arrive.

In addition to these functions, the R3 daemon is
also responsible for controlling the access to the host
R3. Since it is unreasonable for two application pro-
grams to control the same host R3 at the same time, the
R3 daemon must provide a registration mechanism for
the client applications. When a R3 object instance is cre-
ated for a certain robot, it transparently sends the appro-

1404

#include <iostream.h>
#include <R3++.h>
#include <stdlib.h>

main(int argc, char **argv)
{
if (argc != 3) {

cout << "Usage: " << argv[O]
<< " rid velocity"
<< endl;

exit (-1) :
1

int rid = atoi(argv[l]);
int veloc = atoi(argv[2]);

/ / Instantiates an R3 object
R3 r3(rid, R3-ACCESS-COMMAND);

/ / Exit if control to the robot
/ / is denied (maybe another app
/ / is controlling the robot.)
if (r3.ErrnoO ==

R3-REGISTRATION-DENIED)
exit (-1) ;

/ / Move the robot forward
r3.MoveForward(veloc);

1

Figure 4: Example R3 program that uses the
R3++ API to control the movement of the robots.

priate R3 daemon a registration message. The R3
daemon allows the registration only when no other R3
object instance is currently controlling the robot.

4.6 R3Net Monitor
In order to provide maintenance assistance and in

general to monitor the system health, a R3Net Health
and Safety Monitor is being developed.

This monitor will watch the R3Net system and
update an R3 information database with status of bat-
tery, serial link, physical network, host R3, and tracking.
When necessary, the monitor will take control of the
robot and try to fix the problem. For example, if the bat-
tery of a certain robot is getting low, the monitor will
guide the robot to a recharging station and turn on its
recharging circuitry. When the robot finishes recharging,
the monitor will return the robot to its home position.

4.7 Vision-based Global Positioning Sys-
tem (VGPS)

An essential element of the R3Net testbed is the
Vision-based Global Positioning System (VGPS). It

provides accurate information at approximately lOHz on
the position and orientation of each R3 being tracked.
Without VGPS it would be very difficulty to implement
motion control algorithms such as a global "move to"
function. VGPS is also needed for the R3s to find the
recharging station, VGPS hardware include CCD wide-
angle video cameras that are mounted over the R3 arena,
and a VGPS server which digitizes images from the
cameras and performs the tracking computation.

Briefly, the system works as follows: 1) Based on
previous measurements, the predictive stage of a Linear
Kalman Filter estimates a new position of the robots 2)
Based on this prediction, regions of interests are estab-
lished at the estimated position of the target features on
the robots 3) Small regions of interest, encompassing an
individual robot's targets are acquired, and segmented.
The position of each target in the image plane is estab-
lished. 4) A model of the robot and its target is matched
to the acquired target positions. This establishes a mea-
sured position of the robots 5) The measured position of
the robots and previous estimates of the robot's position
are combined using the estimation stage of a Linear Kal-
man filter 6) The procedure is repeated again from step
1.

The use of this kind of active vision approach sig-
nificantly reduces the amount of computation needed to
track the robots. By scanning only certain small regions
of interest, a substantial improvement in tracking perfor-
mance is realized.

Since the robots are tracked in global coordinates, it
is relatively easy to use multiple cameras to track the
robots. When a robot vanishes from one cameras field of
view, it will be picked up by another camera. By using a
model of the camera, and the predicted position of the
camera in world coordinates, it is easy to predict which
camera is able to 'see' the robot at any particular time.

While VGPS is running it maintains a database of
robot positions. At constant intervals it sends informa-
tion using the R3 API to each individual R3 Daemon,
which in turn updates their local database. When users
make R3 API calls to query the position information, the
corresponding R3 Daemon replies with the most current
position. In this arrangement, VGPS is also transparent
to the user applications.

4.8 R3Web
In order to provide a uniform interface to all users,

we implemented a graphical user interface (GUI) based
on the current available World-Wide-Web (WWW)
facilities, e.g. WWW servers such as httpd, and brows-
ers such as Netscape. The main reason to implement our
GUI using the WWW is because WWW facilities are
widely available and therefore maximize the accessibil-

1405

#! / b m / s h

MoveTo 1 5 -0.5 -1.6
SetMotor 1 3 230
sleep Is
MoveTo 1 5 -1.5 -1.6
Stopwheels 1

Figure 5 : Example shell script that moves the
robot the recharging station.

ity to our systems. Also, with the recent introduction of
the Java language, we will be able to provide all the nec-
essary features that a standard GUI package, e.g. Motif,
can provide.

The R3Web setup consists of a main Web server
and two camera servers. The main server is responsible
for providing information about our W3R3 project,
QuickTime movies of our demos, and script submission.
The two camera servers are responsible for serving
images from the two overhead cameras to the users con-
tinuously.

Our WWW-based GUI currently provides the fol-
lowing capabilities: (i) QuickTime movies of various
demos, (ii) submission of simple shell scripts with com-
mands such as Forward, LiftGripper, (iii) near-real-time
view of the R3 arena on the web page (figure 7).

Robot controlling is currently supported in three
levels: level 0, level 1, and level 2. Level 0 support
allows users to view QuickTime movies from our web
page and control a single robot by selecting commands
from our experiments web page. Level 1 and Level 2
supports are for subscribed users only. Level 1 support
allows users to submit scripts via the web to control the
robots. The user will also get instant feedback of the
script they sent. Figure 5 shows an example shell script
that could be sent via the web interface. With level 2
support, an account is created for the users on our sys-
tem. They will be able to login and write R3 applica-
tions using the R3 API.

5.0 Discussion and Future Work
In the above sections we detailed how we have

begun to facilitate universal access to a robotics lab. If
this paradigm sees widespread usage, the robotics com-
munity should realize a greater efficiency in the use of
its resources, and hopefully a more rapid advance
toward its collective goal.

The next step in our implementation will involve
making the R3Net monitor system operational. This will
allow rapid debugging of hardware faults in the system.

The final tool which will be developed is automatic
logging of experimental data. This would include cre-

Figure 7. View of the arena from the web inter-
face.

ation of a compressed MPEG (or equivalent) movie
from multiple cameras and synchronization of sensor
data and out-going commands.

Acknowledgments
The authors wish to thank all of the individuals,

past and present, who have contributed significantly to
this project. These include: Agueda Simo (Art Director
and Web Page design and construction), Martin Harris
(original R3Net Design), Andre Stechert (Systems
Issues and Programming), Dan Liebgold (VGPS imple-
mentation), Loren McQuade (Web page-UNIX inter-
face), Alex Fukunaga a n d Forrest Shaaf
(experimentation with early versions) Tsuwei Chen
(Networking of wireless communication) and Aditya
Damle and Jim Park for web and programming support.

In addition, we thank Andrew B. Kahng for many
useful discussions of this project.

1406

[113 IS Robotics, Venus Reference Manual, 1995.
[12]IS Robotics, The R-3(tm) Robot Manual, Nov.

1993.
[131 I. Tou, S. Berson, G. Estrin, Y. Eterovic, and E. Wu,

“Strong Sharing and Prototyping Group Applica-
tions”, IEEE Computer, 27(5), May 1994, pp. 48-
56.

[141 Y. U. Cao, et al. “A Remote Robotics Laboratory
on the Internet”, Proc, International Networking
Conference, 1995, pp. 65-72.

[151 AT&T, WaveLANffCMCIA User’s Guide, 1994.
[161 A1 Geist, et al. “PVM: Parallel Virtual Machine”,

[171 J. Bloomer, “Power Programming with RPC’,
The MIT Press, 1994.

O’Reilly & Associates, Inc., 1992.
Figure 6. View of the R3 arena room the

ground. The two dots on top of each R3 are
tracking targets used by VGPS.

Finally, we thank Chuck Rosenberg of IS Robotics
for his help in creating time-slicer software on the R3
Robots.

References
T. J. Berners-Lee, R. T. Fielding, and H. F. Nielsen,
“HyperText Transfer Protocol - http 1 .U’, Internet
Draf , March 1995, http://www.ics.uci.edu/pub/ietf/
httpldraft-ietf-http-v 10-spec-00.txt.
T. J. Berners-Lee, R. Cailliau, J. E Groff, and B.
Pollermann, “World-Wide-Web: The Information
Universe”, Electronic Networking, Research, Appli-
cations and Policy, No. 2, 1992, pp. 52-58.
T. J. Berners-Lee and R. Cailliau, “World-Wide-
Web Proposal for a Hypertext Project”, 1990, http:/
/ info.cern.ch/hypertextroposal .html.
T. J. Berners-Lee and D. Connolly, “HyperText
Markup Language Specification - 2.0”, Internet
Draft, Feb. 1995.
J. Borenstein and Y. Koren, “Teleautonomous Guid-
ance for Mobile Robots”, IEEE Trans. on Systems,
Man and Cybernetics, 20(6), Nov.-Dec. 1990, pp.

M. J. Cox and J. E. F. Baruch, “Robotic Telescopes:
An Interactive Exhibit on the World-Wide-Web”,
Proc. 2nd Intemational World- Wide- Web Confer-
ence, Oct. 1994.
K. Goldberg, M. Mascha, S. Gentner, N. Rothen-
berg, C. Sutter, and J. Wiegley, “Desktop Teleoper-
ation via the World-Wide-Web”, Proc, IEEE
Intemational Conference on Robotics and Automa-
tion, 1995.
http://cwis.usc.edu: 80/dept/raiders.
http://telerobot.mech.uwa.edu.au.

1437- 1443.

[101 http://wwwieia.brad.ac.uk/rti.

1407

http://www.ics.uci.edu/pub/ietf
http://cwis.usc.edu
http://telerobot.mech.uwa.edu.au
http://wwwieia.brad.ac.uk/rti

