

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

Abstract

We present an algorithm for computing a representation of image
structure, or image segmentation, and use it for selecting objects in
the image with freehand sketches drawn by the user over the
image. The sketches are mapped onto image segments whose union
forms the intended object. The mapping operation is performed
with the aid of a simplicial decomposition of the image segmenta-
tion - a triangulation formed with vertices chosen to lie along the
medial axes of the segments. Each edge of a triangle lies entirely
inside the two segments that contains its vertices. This decomposi-
tion captures the adjacency information about the segments as well
as the shape of the segment boundaries. Any object boundary is
completely contained in a set of triangles. The triangles are also
used to formulate the problem of estimating gradual photometric
transition across an object boundary, called alpha channel estima-
tion, as a set of local, intratriangle alpha channel estimation prob-
lems that can then be solved more accurately, independently, and
in parallel. Experimental results are included to show how the
algorithm allows selection of image objects with complex bound-
aries using roughly drawn simple sketches.

1

Introduction

Selection

 in digital image editing is the task of extracting
an object

embedded in an image, and is performed fre-
quently in many visual content creation applications. Artists
creating magazine covers routinely extract people or prod-
ucts from photographs to remove unwanted background and
compose the new images such that magazine titles appear to
be occluded by the object naturally. Existing tools for creat-
ing selections focus primarily on the quality of the end
result, and not the ease with which objects may be selected.
As a result, most existing tools require skillful user guidance
and typically cannot be used when the user does not have
much time, such as during a live sports broadcast, or do not
have much dextrous control, such as on a mobile handheld
device, or simply want to avoid the monotony and tedium of
selection, without compromising the quality of the selection.
To enable the use of sophisticated and high-fidelity graphi-
cal selection and manipulation operations in these situa-
tions, we propose a new tool that allows a user to select
objects with loosely hand-drawn sketches similar to those
that humans use to communicate with one another.

Figure 1 shows an example of selection with the new
tool. The sketch drawn by the user is shown in Figure 1(a),
and the resulting selection found is shown in Figure 1(c).
Evidently, the sketch can be made quickly and without
much skill, but the quality of the selection is not compro-
mised. We believe that such an interface would be very natu-
ral for use in the emerging class of ‘tablet’ computers, and
will easily find applications in image and video editing
applications.

2 Related Work

The original inspiration for our work came from Per-
Sketch[17, 18], an augmented simulation of whiteboard
sketching which operates exclusively on line drawings. The
system automatically analyzes line drawings made by the
user and allows access to the underlying structure of the line
drawing, enabling objects to be selected with intuitive ges-
tures. Generalizing PerSketch from line drawings to raster
images is however non-trivial because fully automatic anal-
ysis of an image and its decomposition into corresponding
primitive elements remain subjects of current research[1,
10, 12, 20, 22].

Interactive selection tools for still images have been
attracting significant interest from both researchers and
commercial developers in recent years[2, 9, 13]. The Intelli-

A Representation of Image Structure
and Its Application to Object Selection Using Freehand Sketches

Figure 1. Example of objec-
tion selection. (a) Original
image (By Sherry Ballard, Cal-
ifornia Academy of Science),
shown with sketch. (b) Image
structure computed. (c)
Selection using our algo-
rithm.

(a) (b)

(c)

University of Illinois at Urbana-Champaign
{tankh|ahuja}@vision.ai.uiuc.edu

Kar-Han Tan
Department of Computer Science

and Beckman Institute

Narendra Ahuja
Department of Electrical and Computer Engineering

and Beckman Institute

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

gent Scissors[13] and Image Snapping[9] techniques are
tools that assist users by detecting high-contrast edges in the
vicinity of user-indicated locations, thus relieving users of
the need to trace over the exact boundaries. Snakes[11] may
also be placed in this same category. A common feature of
these methods is that the boundary is sharp so that every
pixel is either inside a selected object or is completely unse-
lected. In most photographic images, however, boundaries
are not as clearly localized. This is true even in high-quality
stock photographs such as those from the Corel Stock Pho-
tography collection[5]. Object boundaries are frequently not
defined by step edges, for example when the object is not in
focus (intentionally or otherwise) or is in motion. Some-
times objects, such as wispy strands of hair, are simply too
small to be represented fully by a finite-resolution digital
image. Examples of diffused object boundaries can be seen
in Figure 2.

One approach to account for diffused boundaries is to
model them as blurred step discontinuities in image inten-
sity. This model has also been used in an interactive image
editing system, ICE, which allows objects to be deleted
seamlessly from intensity images[7]. More conventionally,
this problem is addressed by the use of an alpha channel[15]
to represent the selection. An alpha channel, in our context,
is a real-valued map with one entry corresponding to each
pixel ranging from zero(not selected) to one(fully selected).
It is the representation used with great success in blue screen
matting[19], and a number of commercial selection tools
that produce selections in the form of alpha channels[3].
While the techniques used by these commercial tools are not
published, recently an algorithm that estimates the alpha
channel in the vicinity of object boundaries was pro-
posed[16]. With this ‘Alpha Estimation’ algorithm, the col-
ors of pixels in the vicinity of object boundaries are
mixtures of colors from the foreground object and the back-
ground object. It has been shown to be able to extract
objects with detailed boundaries, given samples of ‘pure’
foreground and background, and boundary pixels. The algo-
rithm uses a mixture model to estimate the alpha channel
value at all the boundary pixels.

3 Overview

We present an object selection algorithm summarized in
Figure 3. The inputs to the algorithm are the image contain-
ing the object to be selected and the freehand sketches
drawn by a human user over the image. The output is the
selection in the form of an alpha channel, with each pixel
having a real value ranging from zero (completely not
selected) to one (fully selected). A previous paper[21] pre-
sented parts of this work. This paper complements the work
reported there. The previously reported work is pointed out
in this section, and is excluded from the rest of this paper.

Our algorithm involves solving two problems: mapping
the sketches to the appropriate object in the image, and com-
puting the alpha channel representation for the object. These
two problems are solved using a representation of the image

structure that is extracted automatically from the image.
This representation consists of a segmentation and a seg-
mentation-guided decomposition of the image into triangles
whose vertices and edges reflect the shapes and spatial adja-
cency of the segments, and is the main focus of this paper.
To provide motivation and context, we now briefly describe
the algorithms that make use of this representation. Details
may be found in [21].

First, we consider the problem of mapping freehand
sketches to objects in the image. We allow the user to draw
sketches consisting of

points

,

lines

, and

 loops

. Points are
typically mouse clicks, and are typically used to select small
objects. Lines are non-self-intersecting curves and used to
indicate object boundaries. Loops are curves that indicate
the spatial extent of objects. We allow the user to specify the
selection with different degrees of precision, according to
the complexity of the image, so that where there is less
ambiguity the user sketches can be less precise. Figure 3
shows this step as

sketch processing

, and its output is a set
of segments whose union forms an

initial selection

, and a
set of triangles whose vertices straddle the boundary of the
selection. These

boundary triangles

 also completely cover
the boundary of the selection, and thus decompose the spa-
tial vicinity of the boundary. For details on sketch process-
ing, see [21].

The initial selection and the boundary triangles are then
processed for

local alpha estimation

. The objective of this
stage is to compute the final selection

using the alpha esti-
mation algorithm[16], a method for factoring out the fore-
ground objects’ contribution to a pixel’s value when the
pixel value is a mixture of the foreground object and the
background. The alpha estimation algorithm, as originally
proposed, assumes that pure samples of the foreground and
background are provided by the user. We automate this pro-
cess by using the initial selection to get the pixel samples.
The problem of estimating the alpha channel over the entire
boundary is also broken into small, local subproblems using
the boundary triangles. The final selection is then obtained
by combining the alpha channels computed within each
boundary triangle. For additional detail and discussion on

Figure 2. Examples of diffused object boundaries. Image
is taken from the Corel Stock Photography Collection.
(a) Original image, the boxed portion of which is shown
in detail in (b), revealing examples of diffused edges. For
high-fidelity image editing, the object boundary details
need to be fully captured with an alpha channel.

(a) (b)

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

the local alpha channel estimation algorithms, see [21].
In this paper, we present our algorithm for image seg-

mentation (section 4), and decomposition of the segmenta-
tion that is used to derive the set of boundary triangles
(section 5). Together these parts comprise the image struc-
ture representation as shown in Figure 3. Experimental
results using the new algorithm are presented in section 6.

4 Image Segmentation

We use a segmentation of the image to represent groups
of pixels that form objects or parts of objects. The algorithm
we use is based on binary-split vector quantization in color
space. For each pixel in the image, we create a three-tuple

, with one component for each color space compo-
nent. Initially the data points will all be placed in a single
cluster. We split this cluster into two at its mean along the
direction of largest variation, and recursively split the result-
ing clusters until the number of data points in each is below
a given threshold. Typically we let the threshold be one half,
quarter, eighth, or sixteenth of the number of pixels in the
image. The cluster label for the pixels thus forms a raw seg-
mentation map. We then apply a morphological ‘majority’
filter that replaces the label of a pixel by the value that
occurs most frequently within a square window centered at
the pixel. We then relabel the pixels so that each 4-con-
nected component in the segmentation map has a unique
label. The segmentation computed by this procedure is an
approximate representation for the spatial extent of objects
in the original image, although shape details are lost due to
the morphological filters employed. However, this form of
segmentation is adequate for our purposes.

5 Simplicial Decomposition

The segmentation map provides a pixel-resolution

approximation of the objects in the image. While this form
of representation of image structure is useful for many
applications, it is still not sufficient for mapping the sketches
to the segments. For example, it is still difficult, in general,
to answer the question: “is a segment to the left side or right
side of a line?” when the line crosses the segment boundary.
This is, of course, the type of questions we need to answer
in order to map freehand sketches onto image segments.
Figure 4 illustrates the way we answer the above question.
The two regions A and B have a curved shared boundary,
which intersects the thick black line, so that no segment is
strictly on one side of the line. However if we can represent
the two segments by two points, then there will be no ambi-
guity unless the line passes through the points. Obviously,
such a representation is only applicable in the local vicinity
of the points. In order to fully represent the shape and spa-
tial configuration of a segmentation, we also need to decom-
pose it into small, manageable pieces such that the
geometric queries necessary for the object selection problem
can be answered.

In this section, we will describe how such a representa-
tion can be computed. We use a simplicial decomposition of
the image into triangles. In order for the triangles, edges and
vertices to reflect the structure of the segmentation map, we
require the triangulation to satisfy the following constraints:

.

The first property ensures that vertices are always
‘inside’ the respective segments they are representing and
are not positioned too near to boundaries. The second prop-
erty ensures that the triangles formed reflect the adjacency
relationship well, in the sense that an edge is always
between two vertices representing adjacent segments. The
third constraint ensures that segment boundaries are always
enclosed by vertices representing the respective segments.
Figure 5 illustrates the second property. It is worth noting
that the example edge cuts the region boundary more
than once, but is still considered a valid edge because it lies
entirely in the union of the two segments. Edge is invalid
because its two vertices lie in the same region, but the edge
passes through two different regions.

The algorithm for triangulating the segmentation map is

r g b, ,() Triangulation Constraints
1. All vertices lie on the medial axes of the segments.
2. For an edge between two vertices, one in region A and

one in region B, the edge must lie entirely in the union of
the two regions.

3. Each triangle must be contained in at most three regions.

e3

e4

Image

Segmentation Triangular

Sketches
User

Selection

Map Tesselation

Image
Segmentation

Simplicial
Decomposition

Image Structure Representation

Sketch
Processing Boundary

Triangles

Figure 3. Schematic of the object selection algorithm.

Local
Alpha

Estimation

Initial
Selection

+

A B

Figure 4. Using points to represent the relative positions of
regions.

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

essentially a procedure for systematically covering the seg-
ment boundaries while choosing points and adding triangles
that satisfy the constraints. We need to define a few terms to
facilitate the description: a pair of adjacent regions meet at
their shared boundaries. We call each continuous piece of
the shared boundary an

opening

. The word opening is used
because in a triangulation there will be at least one edge
passing through each opening, and these edges can only
pass through this piece of shared boundary between the two
regions-an opening.

Junctions

 are points in the segmentation
map where three or more regions meet. In the case of a digi-
tal image, where pixels are on a rectangular grid, at most
four regions can meet at a point. Examples of openings and
junctions are shown in Figure 6. Openings are shown as
solid black lines and junctions white dots. Openings X and
Y are on the share boundaries of the same regions, but the
two are distinct. Opening Z forms a closed loop. Openings
that do not form loops will have two end points, each one
either a junction or a point at the edge of the image. Each
opening thus can have two, one, or no endpoints. The main
steps of the decomposition algorithm are as follows:

Figure 7 illustrates the steps in the algorithm. We now
discuss the individual steps in more detail.

5.1 Covering Junctions

Triangle placement starts at the junctions. Where three
regions meet, we pick one vertex from each of the three
region skeletons corresponding to the junction such that
they form a triangle with edges that are valid. At junctions
where four regions meet, we place two triangles. The two
cases are shown in Figure 8. We use the following goodness
measure for a triangle:

where
 is the

depth

 of a vertex , its distance from the nearest

boundary of its containing segment
 is the minimum of the three internal angles of the triangle

 is the perimeter of the triangle
 is a constant

Thus we favor small triangles with large internal angles,
and vertices that are positioned deep inside their respective
segments. Search for the triangle proceeds in the following
manner: we rank all points on the respective segment medial
axes by their depths, so that vertices with large depths are
highly-ranked. The search is then constrained by using only
the points in the 90 percentile of each of the segment medial
axes involved. With this small set of points, we examine all
possible triangles and pick the best. If no triangle is found
due to the vertex weight constraint, we drop to a lower per-
centile and redo the search. Figure 9(a) illustrates a typical
set of triangles satisfying the tesselation constaints found
with this search procedure.

Figure 9(b) shows another set of triangles satisfying the
same constraints, but using fewer distinct vertices. We
obtain this latter result by a procedure that merges all possi-
ble vertices within a segment. For each vertex , we call the
two vertices on the same triangle its neighbour vertices. We
say that two vertices can be connected if there is a valid
edge between the two vertices. Two vertices can be merged
if they each can be connected to the neighbours of the other
vertex. Generalizing, a vertex can be added to a set of verti-
ces with a neighbour set formed by the union of all the
neighbours of the vertices of a set if the vertex can be con-
nected to all vertices in the neighbour set and all vertices in
the set can be connected to the two neighbours of the new
vertex.

We use a greedy procedure to identify a number of maxi-

Triangulation Algorithm
1. Cover each junction with a triangle.
2. Merge vertices within each segment as much as possible.
3. Cover openings with 2,1 or 0 endpoint(s).
4. Cover the remaining area in the image.

wi
i 1…3=

∑
C P+

---------------------θmin

wi i

θmin

P

C

v

X

Y

Openings

Junctions

Z

Figure 6. Examples of openings and junctions. The diagram
shows a segmentation map with six segments, shown in dif-
ferent shades of gray.

(a) (b) (d) (e)
Figure 7. Steps in the triangulation algorithm. (a) Cover the junctions. (b) Cover the opening that has two covered end
points. (c) Cover the openings that has one covered end point. (d) Cover the openings with no end points (in this case a
loop). (e) Cover the remaining parts of the image between the hull of the triangles and the border of the image.

(c)

e1

e2
e3

Figure 5. Examples of valid and invalid edges in the desired
triangle decomposition: Edges e1 and e3 are valid, while
edges e2 and e4 are invalid.

e4

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

mal merge sets by starting with a single vertex and then
incrementally adding to the merge set vertices that can be
merged with the vertices in the set. A merge set is maximal
when no vertices from the same segment can be added to it.
We then merge the vertices in the set and start growing the
next merge set by a remaining vertex not in the merge set.
We repeat this until all vertices have been included in a
merge set. In the worst case, all merge sets contain only one
vertex, and no merging occurs.

5.2 Openings with Two End Points Covered

Since the initial set of triangles is placed at junctions, and
junctions are endpoints for openings, each initial triangle
thus cover the endpoints for either three or four openings.
This property is retained by the new set of triangles obtained
by the vertex merging operation. Unless an opening ends at
the border of the image or forms a closed loop, both its end
points would be covered by these initial triangles. We iden-
tify such openings and place additional triangles between
the two initial triangles at its two ends to completely cover
these openings. Figure 10 shows such an opening, with its
two end points covered, leaving the middle portion still
uncovered. It can be seen from the diagram that the area in
which the triangles need to be placed is bounded by the two
skeletons, and the two triangle edges at the two ends. This
suggests that we can cover the opening by traversing along
the opening from one end to the other, placing new triangle
vertices on the two opposite skeletons. The traversal algo-
rithm we use is as follows:

Adding Triangles by Skeleton Traversal
1. Given an opening with its two end points covered by two

triangles, identify the two skeletons, and the starting and
ending triangle edges.

2. The starting and ending edges each have a vertex on the
two skeletons. These are the starting and ending vertices
for each of the skeleton. Use Dijkstra’s shortest path algo-
rithm to find a path on each skeleton from the starting ver-
tex to the ending vertex.

3. On each of the skeleton paths, traverse the path. At each
point along the traversal, while the following conditions
are true:

a. The point is connected to the two vertices of the
starting vertex (and thus is able to form a candidate
triangle using the starting edge and the new point).

b. In the new candidate triangle, the angle at the new
point is larger than a preset value . This avoids

the creation of thin ‘sliver’ triangles.
c. The new point has not reached the end of the path.

4. Given the two new candidate triangles, pick the one that
covers more of the opening. Add the new triangle to the
existing set. Add new triangles on the other side of the
skeleton on which the new point was added, using the new
point.

5. Let the new starting edge be the new edge between the two
skeletons that is added with the new triangle.

6. Repeat steps 3-5 until the starting edge coincides with the
ending edge.

5.3 Openings with One End Point Covered

If an opening starts at a junction and ends at the edge of
the image, it would have only one end point covered. We can
treat this end point as a junction by having a virtual, infi-
nitely-thin segment at the edge of the image, running around
the frame of the image. This is illustrated in Figure 11. Then
opening end points at the edge of the image can be thought
of as a junction involving the virtual segment. In order to
place a triangle covering this junction, a vertex would need
to be placed at the point where the opening meets the edge
of the image since that is the only point on the virtual seg-
ment that can be connected to both of the skeletons for the
opening. Now we can choose a triangle in the same manner
as before. The portion of the opening between the new trian-
gle and the triangle at the other end of the opening can then
be covered by vertex merging and skeleton traversal.

θmin

Skeleton 1

Skeleton 2

A

B

Traversal Direction

Junction

Intial
Triangle

Opening

Figure 10 Traversing an opening and covering it with trian-
gles. Triangles that have been placed are shown with thick
edges, while the candidate triangles are shown with thin
edges.

Starting Edge
Starting Vertex

Ending Edge
Ending Vertex

(a) (b)
Figure 9. Vertex merging. (a) The segmentation map, shown
with the initial set of triangles placed at the junctions. (b) The
result of vertex merging.

(a) (b)
Figure 8. Placing initial triangles at junctions. (a) At a three-
region junction, one triangle is placed. (b) At a four-region
junction, two triangles are placed. In a digital image, these
two cases are exhaustive.

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

5.4 Openings with No End Point Covered

In the case where both opening endpoints are at the edge
of the image, we can place two triangles at the two ends as
described above, and then covering the rest of the opening
by vertex merging and skeleton traversal between the two
new triangles.

Openings forming loops do not have endpoints, and as
such do not have initial triangles. We simply choose an edge
between the two respective region skeletons, and add trian-
gles to cover the loop formed by the opening by skeleton
traversal. If there are vertices already placed on the skeleton,
we can use the existing vertex to place the edge. We simply
use the chosen edge as the starting edge and also the ending
edge.

5.5 Covering Borders

Finally, we need to place triangles in the remaining por-
tion of the image, between the image boundary and the tri-
angles placed thus far, to ensure that the entire image is
covered with triangles. All the regions that need to be cov-
ered in this step is by now bounded by the edge of the image
and the hull formed by the triangles already placed. We just
need to identify these uncovered regions, and again use the
skeleton traversal method to cover these regions, using the
“virtual skeleton” of the virtual segment at the edge of the
image and the hull of the existing triangles as the opposite
skeleton. During this traversal, we use the area covered to
choose between candidate triangles. As a result of using the
virtual segment reasoning, there will always be a vertex at
the corners of the image, since those are the only points
along the virtual skeleton that can be connected to points on
the two edges meeting at the corner. This is illustrated in
Figure 11.

6 Experiments

Our first results illustrate the use of lines for selection,
and they are shown in Figure 12. Selection with lines offfers
the most freedom to the user, and more examples are shown
in Figure 13(a)-(b). The same figure also shows how the
same selection can be obtained using points and loops. This
shows how the tool allows a reasonable degree of freedom

S
ke

le
to

n

S
ke

le
to

n

O
p
en

in
g

Edge of the image

Virtual Segment
At the Edge of the image

Virtual Junction

Figure 11. Using a virtual segment at the edge of the image.

Corner of
the image

Figure 12. Examples of selection with lines. (a) Original
image shown with sketch. (b) Resulting selection compos-
ited against a black background. Crane example cropped
from an image by Gerald and Buff Corsi, California Academy
of Science.

(a)

(b)

Figure 13. Different sketches that yield equivalent results.
(a)-(b) Lines. (c) Point. (d) Loop.

(a) (b)

(c) (d)

In Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

so that users do not have to be very precise drawing the
sketches.

We can also use the triangulation to further decompose
the original coarse segments into smaller pieces, such that
each piece corresponds to a vertex. The new decomposition
is easily found from the triangulation: examine each triangle
with two vertices that fall in the same segment. Identify the
edge between these two vertices and find its midpoint. Draw
a line from the midpoint to the third vertex in the triangle. If
the edge is shared by a second triangle on the other side, do
the same for the second triangle. Now cut the segment con-
taining the two vertices along these lines. The resulting seg-
ments are each represented by a vertex in the triangulation,
has the property that if two segments are adjacent, then there
is a valid edge between the two representative vertices. This
is a reasonable way to decompose an image into small
pieces, and is useful in a number of applications. For exam-
ple, one can use these segments in matching and recognition
tasks, among others.

7 Conclusion and Future Work

We have presented a method by which simple freehand
sketches may be used to select objects with complex bound-
aries. We have demonstrated with experimental results that
the method is able to extract complex objects with a mini-
mal amount of user input.

Ongoing work includes improving the computational
complexity of the simplicial decomposition stage and addi-
tional constraints on the triangles. For example, it might be
interesting to place the vertices such that the edges can be
found automatically by computing the Delaunay triangula-
tion of the vertices. It may also be interesting to place the
vertices such that the Voronoi diagram of the vertices
approximates the actual segment boundaries. While the
motivation for computing the image structure representation
is object selection, the representation may be used in a vari-
ety of applications, such as image retrieval, registration, and
object tracking. We plan to investigate some of these possi-
bilities.

8 Acknowledgements

We would like to thank Mark Ruzon and Carlo Tomasi
for making available the source code for alpha estimation,
and the anonymous reviewers for their thoughtful com-
ments. The support of the Office of Naval Research under
grant N00014-96-1-0502, and the Beckman Institute Grad-
uate Fellowship is gratefully acknowledged.

9 References

[1] Narendra Ahuja. A transform for multiscale image segmentation by
integrated edge and region detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(12):1211-1235, 1996.

[2] Alberto Del Bimbo and Pietro Pala. Visual image retrieval by elastic
matching of user sketches. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(2):121-132, 1997.
[3] Sue Chastain. Knock it Out! Tools and Techniques for Removing

Backgrounds. http://graphicssoft.about.com/compute/graphicssoft/
library/weekly/aa000607a.htm, 2000.

[4] Christophe Chesnaud, Philippe Refregier, and Vlady Boulet. Statisti-
cal region snake-based segmentation adapted to different physical
noise models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1145-1157, 1999.

[5] Corel Stock Photography Collection. http://www.corel.com (The
images may also be viewed at http://elib.cs.berkeley.edu/photos/
about.shtml).

[6] Richard O. Duda and Peter E. Hart. Pattern classification and scene
analysis. John Wiley & Sons, Inc., 1973.

[7] James H. Elder and Rick M. Goldberg. Image editing in the contour
domain. In Proceedings IEEE International Conference on Computer
Vision and Pattern Recognition, pages 374-381, 1998.

[8] Allen Gersho and Robert M, Gray. Vector Quantization and Signal
Compression. Kluwer Academic Publishers, 1992.

[9] Michael Gleicher. Image Snapping. In Proceedings SIGGRAPH, pp.
183-190, 1995.

[10] Robert M. Haralick and Linda G. Shapiro. Survey: Image segmenta-
tion techniques. Computer Vision, Graphics, and Image Processing,
vol. 29, 100-132, 1985.

[11] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes:
Active Contour Models. In Proceedings of the First International
Conference on Computer Vision, pp. 259-268, 1987.

[12] Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi. Con-
tour and Texture Analysis for Image Segmentation. Submitted to the
International Journal of Computer Vision.

[13] Eric. N. Mortensen and William A. Barrett. Intelligent scissors for
image composition. In Proceedings SIGGRAPH, pp. 191-198,1995.

[14] Elin R. Pedersen, Kim McCall, Thomas P. Moran, and Frank G.
Halasz. Tivoli: An electronic whiteboard for informal workgroup
meetings. In Proceedings INTERCHI’93, pp391-398, 1993.

[15] Thomas Porter and Tom Duff. Compositing digital images. Computer
Graphics, 18(3):253-259, 1984.

[16] Mark Ruzon and Carlo Tomasi. Alpha Estimation in Natural Images.
In Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, pp. 597-604, 2000.

[17] Eric Saund and Thomas P. Moran. A perceptually-supported sketch
editor. In Proceedings UIST, pp. 175-184, 1994.

[18] Eric Saund and Thomas P. Moran. Perceptual Organization in an
interactive sketch editing application. In Proceedings IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 597-604,
1995.

[19] Alvy Ray Smith and Jim Blinn. Blue Screen Matting. In Proceedings
SIGGRAPH, 1995.

[20] Mark Tabb and Narendra Ahuja. Multiscale image segmentation by
integrated edge and region detection. IEEE Transactions on Image
Processing, 6(5):642-655, May 1997.

[21] Kar-Han Tan and Narendra Ahuja. Selecting objects with freehand
sketches. IEEE International Conference on Computer Vision, vol. 1,
pp. 337-344. July 2001.

[22] Yair Weiss. Segmentation using eigenvectors: a unifying view. Pro-
ceedings IEEE International Conference on Computer Vision, 1999.

[23] Donna J. Williams and Mubarak Shah. A fast algorithm for active
contours and curvature estimation. CVGIP: Image Understanding,
55(1):14-26, 1992.

