
Appearance-based Eye Gaze Estimation

Kar-Han Tan
Department of CS and

Beckman Institute
University of Illinois
at Urbana-Champaign

David J Kriegman
Department of CS

University of California
at San Diego

Narendra Ahuja
Department of ECE and

Beckman Institute
University of Illinois
at Urbana-Champaign

Abstract

We present a method for estimating eye gaze direction,
which represents a departure from conventional eye gaze
estimation methods, the majority of which are based on
tracking specific optical phenomena like corneal reflection
and the Purkinje images. We employ an appearance man-
ifold model, but instead of using a densely sampled spline
to perform the nearest manifold point query, we retain the
original set of sparse appearance samples and use linear
interpolation among a small subset of samples to approxi-
mate the nearest manifold point. The advantage of this ap-
proach is that since we are only storing a sparse set of sam-
ples, each sample can be a high dimensional vector that
retains more representational accuracy than short vectors
produced with dimensionality reduction methods. The al-
gorithm was tested with a set of eye images labelled with
ground truth point-of-regard coordinates. We have found
that the algorithm is capable of estimating eye gaze with a
mean angular error of 0.38 degrees, which is comparable
to that obtained by commercially available eye trackers.

1 Introduction

The ability to detect the presence of visual attention from
human users, and/or determine what a human user is look-
ing at by estimating the direction of eye gaze is useful
in many applications. For example if a graphics renderer
knows which part of the display the user is looking at, it
can adapt itself such that more details are shown where the
visual attention is directed. In behavioural studies gaze de-
tection and estimation are also invaluable. For example,
the frequency with which a pilot looks at a panel display,
and the length of time required to read off the information
could be used to measure the effectiveness of the display.
Perhaps the application area that would benefit the greatest
with the maturation of vision-based gaze estimation tech-
niques would be in human-computer interaction [13, 6, 5].

With the availability of affordable computational power and
high-quality imaging hardware, eye trackers may well be-
come standard issue on personal computers in the near fu-
ture.

2 Previous Work

Not surprisingly, eye tracking has attracted the interest of
many researchers, and eye trackers have been commercially
available for many years. A comprehensive survey of the
earlier works can be found in [16]. Our review shall focus
on eye tracking based on computer vision techniques.

A model-based approach to eye image analysis can be
seen in Daugman’s work [3]. In this application, the ma-
chine used for identifying persons needs to seach the input
image to localize the iris. The algorithm essentially per-
forms a coarse-to-fine search for a circular contour in the
image corresponding to the limbus, and then searches for
the pupil. In this case the model is simply a circle and
a specificati on of the grayscale variation around the con-
tour. For example, while searching for the pupil (without
using the bright pupil method), the algorithm normalizes
the grayscale values around the contour so as to bring out
the pupil contour.

A more elaborate model for the eye was proposed in
Yuille et al.’s deformable template work [17] which explic-
itly models the limbus as a circle, eye lids as two parabolic
sections, the centroids of the two visible portions of the
sclera beside the iris, and the two regions of the sclera be-
tween the eye lids and below and above the iris. The limbus
circle is attracted to contours that are dark on the interior
and light on the outside, and the four scleral centroids are
attracted to bright portions of the image. Gradient descent
is then used to fit the model to images of eyes. Although
gaze estimation was not a goal of the paper, one could use
the parameters thus derived to estimate the direction of the
eye gaze. This template was augmented in [11] to account
for eye blinks. This eye model is able to transition between
the open and close state according to the given input image

���������	
���������������������
�����������������
��������������
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

to produce the best fit.
Trackers have also been built that look for other facial

features, like the corners of the mouth, corners of the eyes,
and corners of the eye brows. In [7], the tracking pro-
cess runs in two stages, where the facial features are first
matched with the input video stream, and using the head
pose information derived in the first stage, a second stage
then estimates the eye gaze using an eye model that is used
to track the limbus. A simpler model was also proposed in
[4], where only the facial features were used to compute a
facial normal, which is then used as a substitute for the gaze
direction.

In Baluja and Pomerleau’s neural network-based
method [1], cropped images of the eyes are used as inputs
to a neural network. Training data is collected by requir-
ing the user to look at a given point on a computer monitor,
and taking a picture of the eye looking at the given point.
Thus each training sample consists of the image of the eye
and an (x, y) label of the location on the screen that the
user is looking at. In their experiments, 2000 training sam-
ples were used to train a multilayer neural network, and the
authors reported an accuracy of about 1.5 degrees. Their
tracker runs at 15Hz, and allows some head movement. A
similar method is documented in [14], which also achieved
an accuracy of 1.5 degrees, using 3000 training samples.

3 Using Appearance-based Methods for
Gaze Estimation

Instead of using explicit geometric features like contours
and corners, an alternative approach to object pose estima-
tion is to treat an image as a point in a high-dimensional
space. For example, a 20 pixel by 20 pixel intensity image
can be considered a 400-component vector, or a point in
a 400-dimensional space. Algorithms using this represen-
tation are often referred to as being appearance-based or
view-based, and they have been successfully applied to ob-
ject recognition and detection [2, 8, 12, 15]. View-based
techniques have the advantage that they are easy to im-
plement and are generally more robust than feature-based
methods. [8, 9] showed that a set of images of an object
taken under varying viewing parameters forms a continu-
ous set of points in the high-dimensional space, which they
call an appearance manifold. For a given image of an ob-
ject, its viewing parameters can be estimated by finding the
point on the object’s appearance manifold that is nearest to
the given image, and using the parameters for that point as
the estimate.

3.1 Spline-based Representation

In theory, the appearance manifold is continuous. How-
ever, in practice often only a discrete set of manifold sam-

ples are available. Clearly if we estimate object pose pa-
rameters with a nearest-neighbour search, the precision is
directly related to how densely the manifold is sampled. As
such, a spline representation has been proposed in [8, 9],
where a spline is fitted to the sparse set of samples and then
used to approximate the continuous manifold. It was then
suggested that the spline can be densely sampled and the re-
sulting set of points be used in the nearest-neighbour search,
thus allowing the manifold to support queries at arbitrary
precisions. Of course, this can result in a large number of
sample points, and consequently a large computational cost
in the nearest-neighbour search. Dimensionality reduction
techniques such as PCA can be employed to lessen the im-
pact, and also clever data structures can be used to speed up
the search process [9].

3.2 Linear Representation

An alternative approach for representing the appearance
manifold is to assume that points on the manifold can be
approximated by linear combinations of neighbouring sam-
ples. Thus for a given test image, we find a set of manifold
sample points that are near to the test image, and interpolate
these neighbouring sample points to give an estimate for
the point on the manifold which is closest to the test image.
This approach is similar to that proposed in [10], in which
the k-nearest sample points from the manifold are used for
interpolation. However this does not make use of the topo-
logical information available in a parametrically sampled
manifold in the sense that the k-nearest sample points may
not actually be from a single neighbourhood on the mani-
fold. A better way would be to ensure that the picked sam-
ple point are truly ’geo desic’ neighbours on the manifold,
as shown in Figure 1. This constraint is critical when using
an appearance manifold for parameter estimation.

3.3 Nearest manifold point querying

Having discussed the idea and motivation behind our
technique for parameter estimation, we are now ready to
present our algorithm, which consists of three steps:

1. Given a test point, find the closest set of sample points
on the manifold forming a neighborhood.

2. Find a set of weights that interpolate these points to
give an estimated point on the manifold.

3. Use the same weights to interpolate the parameters for
the sample points to obtain the estimated parameters
for the test point.

Details for each of the steps are as follows:
Choose closest manifold points. In order to ensure that

the samples chosen form a neighbourhood on the manifold,

���������	
���������������������
�����������������
��������������
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

(a) (b)

Figure 1. Choosing samples from a manifold
(shown as an elongated loop) that are near
to a given point (shown as a black dot). The
chosen manifold points are enclosed within
the dashed ellipses. (a) Without topologi-
cal constraint. It can be seen that two dis-
joint patches on the manifold are chosen. (b)
With topological constraint. The chosen set
of points form a neighbourhood

we first need a way to represent the topology of the man-
ifold. In our case, each manifold point is an image of an
eye, labeled with a 2D coordinate of a point on a display
device which the eye is fixating upon when the image was
taken. In this case we can use a Delaunay triangulation of
the set of 2D coordinates to represent the topology: if there
is an edge in the Delaunay triangulation between two of the
points, then the two corresponding eye images can be con-
sidered neighbours on the manifold. Given a test image, we
then choose the set of samples by first ranking all manifold
points by their distance to the test image. We then start from
the nearest point and go down the sorted list. Choose the
first three points encountered that form a triangle. We also
add the set of points that are adjacent to these three points
to the chosen set.

Compute interpolating weights. Once we have the set
of sample manifold points, we can compute the weights by
solving a constrained least squares problem. Let x be the
test image and s1 . . . sk be the manifold samples chosen.
We want to find a set of weightsw1 . . . wk that minimizes
the error

ε = |x −
∑

i

wisi|

subject to the constraint

∑

i

wi = 1

. Which can be solved by the procedure described in [10].
Estimate parameters. Once we have the weights wi, we

can estimate the parameters for the point x by interpolating

the sample parameters with the same weights,

Qx =
∑

i

wiQsi

where Qy is the parameter vector for a point y.

4 Experimental Setup

To test the performance of our algorithm in eye gaze es-
timation, we constructed an image capture system to col-
lect a data set consisting of images of an eye that are la-
beled with the coordinates of a point that the eye is looking
at. The system consists of a computer with a monitor, a
monochrome camera, and a framegrabber. The image cap-
ture process is as follows: the computer displays a crosshair
marker on its screen, and the user is asked to align (by mov-
ing a mouse) a cursor (also displayed as a crosshair) with the
marker shown, and click on the marker. The next marker is
then shown in a different location, and the user repeats the
task. Since the user’s eye will be looking at the position
of the marker on screen when he/she is trying to align the
marker and the cursor, images of the user’s eye are cap-
tured when the cursor and marker are almost aligned. Note
that the image capture takes place before the user clicks on
the marker, since it is likely that upon completing the task
the eye may start looking away in anticipation of the next
marker. To further ensure that the user is indeed looking at
the marker positions displayed, we pick the positions of the
markers randomly while ensuring that at some point the ex-
treme corner coordinates are chosen. If the marker positions
can be reliably predicted by the user, it may be possible for
the user to align the markers without looking at the markers
directly, which would result in erroneous labels for the eye
images.

We also mounted an infrared illuminator next to the cam-
era, which has a sensor that is sensitive to infrared as well
as visible light. This not only ensures that the eye is well
lit, it also provides a certain amount of control over the il-
lumination. Typical images can be seen in Figure 2(a). It
can be seen that the facial region around the eye appears
very bright. One should realize, however, that since the il-
lumination was with infrared light, the user does not see a
bright light, which would be very distracting. It should also
be noted that the pupil does not exhibit the “red eye” effect
since the infrared light was not close to the optical axis of
the camera. In fact, the eye turns out to be much darker than
the brightly illuminated facial region. We use this effect to
find the eye in the image by thresholding the intensity image
and identifying the connected dark region that is closest to
a predetermined size. For the images shown, the intensity
threshold is set at 200 (out of 255), and the region size pa-
rameter is chosen to be 4000 pixels. The eye image is then
cropped from a rectangular region centered at the spatial

���������	
���������������������
�����������������
��������������
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

(a) (b)

Figure 2. Samples of labeled data set col-
lected from three subjects (from top) X, Y,
and Z, who are at distances 18, 20, and 24
inches away from the display respectively. (a)
Raw captured image. Cropped eye region is
shown as an overlaid rectangle. (b) Cropped
and scaled image of eye used as appearance
sample.

centroid of this dark region. Examples of the cropped im-
age is shown in Figure 2(b). It can be seen that the cropping
is different for the three users shown, in that the cropping
algorithm also included the eye brows for the second user,
and did not include the eye completely in the image. It turns
out that this is still good enough for gaze estimation.

4.1 Measuring Accuracy

We used a set of 252 images each from three users, and
evaluated our system by “Leaving one out”: using each one
of the eye images as the test image, and the rest of the set to
form the appearance manifold. The mean error is computed
as

Mean error =
1
n

n∑

i=1

|Pe − Pt|

where
Pe = estimated position
Pt = true position
n = number of test samples

In this experiment, the eye is 18-24 inches away from the
monitor, which displays the markers in an approximately
planar, rectangular region of about 12 inches wide and 9
inches tall. We also assume that the line of sight is perpen-
dicular to the planar region when the eye is looking at its
center. We can estimate the mean angular error as follows:

Mean angular error = tan−1 Mean error
Distance from Screen

Figure 3(c) shows the results for Subject X with the entire
set of 252 images. The crosses show the real marker po-
sitions, and the round dots show the estimated positions,
with a line segment joining corresponding crosses and dots.
From the scatter plot, we can see that there were some large
errors around the periphery. This is to be expected, as the
positions were estimated by interpolating marker positions
from the appearance manifold, and the test samples on the
periphery cannot be expected to be approximated by extrap-
olating points that are near the periphery. We can identify
the peripheral test samples as those whose true marker po-
sitions form the convex hull of the complete set of marker
positions. We also discard the convex hull vertices of the
set of points left after removing the first convex hull. For
the data set shown, it amounts to removing the set of points
on the rectangular border. The average angular errors for
the three subjects are tabulated in Figure 3(a). As can be
seen, the angular error averaged over all subjects is 0.3838
degrees.

Figure 3(b) shows that the accuracy achieved is compa-
rable to those reported by commercially available optical
trackers, and is superior to the existing appearance-based
methods using neural networks. The Dual Purkinje Image
eye tracker claims to have an impressive “less than 1 minute
of arc resolution” accuracy (http://www.fourward.com).
However this is measured with an artificial eye. Vision
researchers who have used the Dual Purkinje Image eye
tracker reported that its accuracy with human subjects is on
the order of 0.5 degree. The same table also shows the num-
ber of calibration samples required for each of the methods.
While our method still requires considerably more samples
than optical trackers like the Eyelink II, it requires dramati-
cally fewer samples than the neural network-based methods
while still achieving superior accuracy.

5 Conclusion

We have presented a new method for estimating eye gaze
direction based on appearance-manifolds, and the degree of
accuracy achieved is very encouraging. We have also sug-
gested an enhancement to the appearance manifold method
by proposing a nearest manifold point search technique that
exploits the topological information inherently present in
the manifold model. The degree of accuracy achieved in
our experiments is comparable to existing eye trackers, in-
dicating that appearance-based parameter estimation is at
least a viable solution to the eye gaze estimation problem.

Acknowledgments

The support of the Office of Naval Research under grant
N00014-99-1-0091 is gratefully acknowledged. D. Krieg-
man was supported in part by NSF ITR IIS 00-85980. The

���������	
���������������������
�����������������
��������������
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

Subject Complete Non-peripheral
X 0.47853 0.44551
Y 0.43685 0.30534
Z 0.47112 0.4004

Mean 0.4622 0.3838
(a)

System Accuracy Calibration
(degrees) Samples

Xu-Machin-Sheppard [14] 1.5 3000
Baluja-Pomerleau [1] 1.5 2000

ASL Eyelink II 0.5 9
Appearance-based 0.38 252

(b) (c)

Figure 3. Gaze estimation results. (a) Average angular errors for the three subjects, measured in
degrees. (b) Comparing with existing methods. (c) Estimation results for subject X. Crosses are the
ground truth marker locations, and the round dots are the estimated location that the eye is fixated
upon.

first author is very grateful to Professor George McConkie
for his helpful suggestions, and to Dr Hong Hua for her help
in locating several of the papers referenced.

References

[1] S. Baluja and D. Pomerleau. Non-intrusive gaze tracking
using artificial neural networks.CMU CS Technical Report,
CMU-CS-94-102, 1994.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-
faces vs fisherf aces: recognition using class specific linear
projection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(7):711–720, 1997.

[3] J. G. Daugman. High confidence visual recognition of per-
sons by a test of statistical independence. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(11):1148–
1161, 1993.

[4] A. H. Gee and R. Cipolla. Determining the gaze of faces in
images. University of Cambridge Department of Engineer-
ing Technical Report, CUED/F-INFENG/TR 174, 1994.

[5] K. Grauman, M. Betke, J. Gips, and G. R. Bradski. Commu-
nication via eye blinks – detection and duration analysis in
real time. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2000.

[6] R. J. K. Jacob. The future of input devices. ACM Computing
Surveys, 28(4), 1996.

[7] Y. Matsumoto, T. Ogasawara, and A. Zelinsky. Behavior
recognition based on head pose and gaze direction measure-
ment. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2127–2132, 2000.

[8] H. Murase and S. K. Nayar. Visual learning and recogni-
tion of 3d objects from appearance. International Journal of
Computer Vision, 14(1):5–24, 1995.

[9] S. A. Nene and S. K. Nayar. A simple algorithm for nearest
neighbor search in high dimensions. IEEE Transactions on
Pattern Analysis andMachine Intelligence, 19(9):989–1003,
1997.

[10] S. T. Roweis and L. K. Saul. Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290(22):2323–2326, 2000.

[11] Y.-L. Tian, T. Kanade, and J. Cohn. Dual-state paramet-
ric eye tracking. In Proceedings of the 4th IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion (FG’00), pages 110 – 115, 2000.

[12] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuroscience, 3(1), 1991.

[13] C. Ware and H. H. Mikaelian. An evaluation of an eye
tracker as a device for computer input. In Proceedings of
the ACM Conference on Human Factors in Computing Sys-
tems and Graphics Interface (CHI/GI) 1987, pages 183–
188, 1987.

[14] L.-Q. Xu, D. Machin, and P. Sheppard. A novel approach
to real-time non-intrusive gaze finding. InBritish Machine
Vision Conference, 1998.

[15] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in
images: A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(1):34–58, 2002.

[16] L. R. Young and D. Sheena. Methods and designs: Survey
of eye movement recording methods. Behavior Research
Methods and Instrumentation, 7(5):397–429, 1975.

[17] A. L. Yuille, P. W. Hallinan, and D. S. Cohen. Feature ex-
traction from faces using deformable templaces. Interna-
tional Journal of Computer Vision, 8(2):99–111, 1992.

���������	
���������������������
�����������������
��������������
����������� !�

�"#$%&"'(&(")*� �+'#,���-� �� ������

