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Chapter 1

Introduction

The availability of affordable computational power and graphics rendering capabilities is

enabling the creation of realistic imagery that are widely used today in special effects and

animation. New forms of visual media with a higher degree of interactivity have also emerged

as a result of these technological advances. For example, virtual reality can be considered

a form of visual media that is controlled by the position of the viewer to give a sense of

immersion. Video games are another form where the viewer can give feedback through

input devices like buttons and joysticks. Some of the most popular video games can be

considered interactive movies, where the player gets to control the events in action sequences

and sometimes determine the story line, resulting in a more engaging experience than with

traditional media.

While there are many factors that contribute to the effectiveness of a VR or video game

presentation, one of the most important is visual realism, and the use of images as textures

is often the key. Figure 1.1 shows a screenshot taken from a popular video game that

is rendered predominantly with texture mapped 3D models. The main character and his

vehicle are fully articulated, detailed models. The mountains and ground are static objects,

while the distant backdrop is a panoramic image. Figure 1.2 shows a screenshot of a second

game that makes more extensive use of images: except for the main characters, the entire

background is a prerendered image. While the first game allows dynamic camera movement,

the second relies on fixed cameras to give the illusion that the 3D characters are interacting

1



Figure 1.1: A typical scene in a video game rendered with texture-mapped 3D models.
(Scene taken from Halo, image courtesy of Bungie Studios.)

with the environment. On the other hand, the second game clearly is richer in visual detail

and is more realistic. These examples illustrate a tradeoff between the two techniques: while

image-based methods allows a higher level of visual realism and detail, freedom in viewing

angle placement is lost.

Researchers in the computer graphics community have attempted to bridge this gap by

introducing image-based rendering methods that essentially capture all possible views of

objects with a large collection of images and retrieves the appropriate frames for display

according to viewing angle. Typically this requires the object being modeled to be placed

on a specialized apparatus with a large array of cameras. Great success has been achieved

with these methods when modeling rigid objects that can be placed on turntables. The

capture of complex, articulated, and moving objects (such as human beings) in an image-

based representation remains a challenge. Sometimes the object is simply unavailable for

careful setup and modeling. For example, it may be desirable to capture an athlete’s moves

during a special moment in a game that cannot be reproduced afterwards, and the only

source of data could be video footage.
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Figure 1.2: A typical scene in a video game rendered predominantly with image-based tech-
niques. (Scene taken from Onimusha 1 and 2, images courtesy of Capcom.)

1.1 Thesis Overview

Ultimately, we would like to be able to capture a dynamic scene in an image-based represen-

tation, and allow reproduction of the scene in a realistic fashion, allowing a higher degree of

freedom in view point placement than is allowed with current methods. In this thesis, we

present research work that attempts to address some of the challenges and make progress

towards the ultimate goal. In particular, we show how objects can be extracted from im-

ages and video streams, and how a novel camera can be constructed to capture dynamic

environments in the form of a panoramic video stream.

1.1.1 Extracting Visual Objects

Object extraction from images and video streams is an area that at first glance has seen very

little research work done. However the fields of computer graphics and computer vision are

actually rich sources of ideas and inspiration for the problem. In subsequent chapters we

will examine a number of subjects and work towards an algorithm that integrates many of
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these ideas.

Low Level Boundary Extraction with Fast Probabilistic Matting In this chapter we

examine a low level algorithm for boundary extraction, and a number of existing al-

gorithms that address this problem. We then describe a new algorithm we call Fast

Probabilistic Matting that produces results comparable with the existing methods, but

uses a closed-form solution that runs much faster than the existing exhaustive search

and iterative solutions.

Interactive Object Extraction from Images In chapter 3, we present a method for ex-

tracting objects with complex and diffused boundaries from single images. The algo-

rithm uses an alpha channel estimation algorithm to allow a user to ‘select’ an object

from an image.

1.1.2 Representing Visual Objects

Appearance-based Object Modeling and Tracking One of the most important issues

in object extraction from video is that an object may appear completely different when

viewed from a different direction. In this chapter we study methods for modeling the

appearance of objects under varying pose. We propose a new representation called

faceted models and tested it in an appearance-based object tracking algorithm,

Appearance-based Eye Gaze Estimation Using faceted models, we can also estimated

object pose when a sufficiently dense set of samples is available. The pose estimation

capability is tested in an appearance-based eye gaze estimation algorithm.

1.1.3 Capturing Visual Environments

We also present a method for capturing the environment using a novel camera that is capable

of simultaneously capturing multiple panoramic video streams each taken from different

4



viewpoints. The camera can be configured to give stereoscopic (two-view) video streams and

in theory is capable of an unlimited number of view points. The captured panoramic images

can then be used as environmental backdrops in a 3D scene.
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Chapter 2

Probabilistic Alpha Channel
Estimation for Low Level Object
Boundary Extraction

The alpha channel, usually represented as a fourth component in each pixel of an image

alongside the RGB channels, was first introduced in [80] as a construct for compositing mul-

tiple independently rendered computer-generated visual objects into a single image. Today

the alpha channel is widely used in computer graphics, film and video production for fusing

both synthetic and conventional visual digital media content. As it is a digital substitute for

mattes [87] in film and video production, extracting an alpha channel is sometimes referred

to as matting.

Fundamentally, an alpha channel captures the idea that the color value in an image pixel

may in general be the result of mixing the colors from multiple objects. This can arise

due to various factors commonly found in image capture and synthesis scenarios such as

transparency, the finite resolution of imaging sensors, optical defocus, and camera-object

relative motion during image formation, and antialiasing, among others. In order to natu-

rally extract an object from an image, say to perform a cut-and-paste operation, it is very

important to take into account the color blending across object boundaries, and attempt to

recover the pure colors for the object extracted. This problem of estimating the pure object

and background colors, and the mixing coefficient is called the alpha channel estimation

6



problem [83].

The basic equation for alpha channel compositing is as follows:

C = αF + (1− α)B

where F represents the pure foreground color, and B represents the pure background color. C

represents an observed color value that is formed by a linear blending of F and B, controlled

by the alpha channel value α. The alpha channel estimation problem can then be stated as

follows:

We are given an image, with pixels that are labeled as pure foreground, pure

background, and mixed. The alpha values for the foreground pixels are given

to be 1, and those for the background pixels are given to be 0. Compute alpha

channel values for the rest of the pixels.

As stated, the problem is inherently underconstrained. For each observation C, we need

to find its corresponding B and F , and the blending factor α. Geometrically, in a three

dimensional color space, for a given color C, the problem is that of finding a straight line

segment FB that passes through C. The ratio BC
BF

is equal to the value α.

2.1 Previous Work on Alpha Channel Estimation

Blue screen matting can be considered a special case of the alpha channel estimation prob-

lem, where the background is assumed to be of a single color. An excellent summary of

conventional blue screen matting algorithms can be found in [87]. [111] refers to the gen-

eral alpha channel estimation problem as Natural image matting, and has a good survey

of some of the representative techniques, including algorithms used in existing commercial

products such as KnockOut and Primatte. Recently, [44] proposed a PCA-based method for

use in high-resolution images and video sequences. While the solutions discussed thus far
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are predominantly geometric in nature, the most promising solutions to the problem adopt

a probabilistic framework. Currently there are two known probabilistic methods: [83] mod-

els the ‘pure’ foreground and background colors with gaussian distributions, and assumes

that a mixed color is drawn from gaussians created by interpolating the parameters of the

pure distributions. It was proposed that the alpha parameter be estimated by an exhaustive

search. [111] formulates the problem in a maximum-likelihood framework and proposes an

iterative solution. [105] uses a similar framework for extracting layers from video sequences.

While both [83, 111] produced impressive results, they are computationally intensive. The

exhaustive search in [83] makes it especially expensive to compute. [111] is more economical,

but still takes several minues to process a one-megapixel image. In both cases there is also

an undesirable tradeoff between quality and computation time. In [83], the computation

time is inversely proportional to the discretization step size. As a result, cutting down

on computation time by increasing the step size results in a graininess in the estimated

alpha channel (As observed by the authors of [111]). In [111], a noise variance parameter

determines how close the estimated line in color space is to the mixed pixel color. The smaller

the noise level allowed, the longer it will take the iteration to converge. With a large noise

variance, however, the estimated pure foreground and background colors do not interpolate

to faithfully reproduce the original mixed pixel color.

Given that one of the key application areas of alpha channel estimation is in video produc-

tion, fast real time implementations that produce high-quality mattes are highly desirable.

This is our motivation for investigating faster solutions to the problem without compromising

the quality of the estimated result.

2.2 Fast Probabilistic Alpha Channel Estimation

In this section, we present our algorithm which solves the maximum-likelihood estimation

problem in closed form. Subsequent sections describe experiments that evaluates the perfor-

8



mance of the proposed algorithm and how it compares to existing algorithms.

2.2.1 Probabilistic Color Modeling

Like [83, 111] we assume that we are given samples of ‘pure’ foreground and background pixel

colors, and a set of ‘mixed’ pixels for which the alpha channel values are to be estimated.

We first group the pixel colors in the foreground and background samples into a number of

clusters. For example, a foreground object that is red-and-blue could be represented by a

red cluster and a blue cluster. Each color cluster is modeled with a multivariate Gaussian

distribution characterized by its centroid µ and covariance matrix Σ. An observed mixed

color C is formed by linear blending of colors F and B drawn from respective clusters with

centroids µ1, µ2 and covariance matrices Σ1, Σ2. The blending is represented by a line through

C (Point P in Figure 2.1). Different points along the line correspond to different mixes of F

and B which are themselves points on the line at minimum Mahalanobis distance to µ1 and

µ2 respectively. The relative distance of P from F and B will then yield the alpha value.

2.2.2 A Closed-form Solution

We start by revisiting some basic facts about Mahalanobis distances and covariance matrices.

It is well known that covariance matrices, being positive semidefinite, can be written in the

form Σ = QΛQT where Q is orthonormal and Λ is diagonal. Also Σ−1 = QΛ−1QT =

QΛ− 1
2 Λ− 1

2 QT . The squared Mahalanobis distance (also known commonly as the covariance-

weighted distance) between two points x, y is defined as

distancemahalanobis = (x− y)T Σ−1(x− y)

If we write it as

(x− y)T QΛ− 1
2 Λ− 1

2 QT (x− y)

= (Λ− 1
2 QT (x− y))T (Λ− 1

2 QT (x− y))
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(a)

(b)

Figure 2.1: Mapping onto the covariance-weighted space. (a) Original geometric entities.
(b) Mapped into covariance-weighted space. Notice that the isocontour for cluster 1 is now
a circle.

We can see that the term Λ− 1
2 QT can be thought of as a transformation that maps a vector

into a covariance-weighted space in which the spectrum of eigenvalues is uniform, and the

euclidean distance is equal to the mahalanobis distance. Figure 2.1 illustrates the geometric

relationship between the entities involved in the following derivation. As the derivation is

largely independent of the problem domain, we chose to use a generic set of variable names

that are easier to remember. In the diagram, we have two clusters represented by the two

centroids µ1, µ2 and the two covariance matrices Σ1, Σ2. We want to find a line passing

through the point P that minimizes the Mahalanobis distance from each of the centroids

to the line. The points x1, x2 are the points on the line that are nearest to the respective

centroids. Note also that the distance between the centroid µ1 and the point x1 is weighted

by Σ1, and the distance between the centroid µ2 and the point x2 is weighted by Σ2. Let

the vector Wp be parallel to the line x1x2.

The first observation about the relationship between the line and each of the clusters
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is that at the points x1 and x2, the line is tangential to the respective isocontours for the

minimum distance from the two clusters. That is to say if point x1 is at a (covariance-

weighted) l units away from µ1, then the line is tangential to the isocontour of points at a

distance l units away from µ1. If the line cuts the distance-l isocontour twice, it means that

there is a point on the line that touches another isocontour at distance l′, such that l′ < l.

If the line does not touch the isocontour at distance l, it means that all points on the line

are at a distance greater than l from µ1, and there must be another isocontour at distance

l′′ > l that is tangential to the line.

In order to express this constraint, we make a second observation that the isocontours

for a cluster, that are in general ellipsoids, become spheres when transformed in to the

covariance-weighted space. If we transform both the vector Wp and the centroid µ1 into the

space weighted by the covariance matrix Σ1, the isocontours of cluster 1 become spheres,

and the vector (x1 − µ1), now a radius vector, should be perpendicular to the transformed

vector Wp. If we let W1 = Λ
− 1

2
1 QT , and Σ1 = W T

1 W1, we can write down the constraints for

the first cluster as

(W1Wp)
T (W1(x1 − µ1)) = 0,

and thus

W T
p Σ−1

1 (x1 − µ1) = 0 (2.1)

and similarly for the second cluster

W T
p Σ−1

2 (x2 − µ2) = 0 (2.2)

We also know that the points x1 and P lie along the line represented by vector Wp. Thus

Wp =
1

k1

(x1 − p),
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where k is a constant, so

x1 = P + k1Wp (2.3)

Substituting equation 2.3 into equation 2.1 to eliminate x1, we obtain for cluster 1

W T
p Σ−1(P + k1Wp − µ1) = 0

k1W
T
p Σ−1

1 Wp + W T
p Σ−1

1 (P − µ1) = 0

k1 =
W T

p Σ−1
1 (µ1 − P )

W T
p Σ−1

1 Wp

(2.4)

and analogously for cluster 2

k2 =
W T

p Σ−1
2 (µ2 − P )

W T
p Σ−1

2 Wp

(2.5)

Now the squared Mahalanobis distances d2
1 and d2

2 can be found by applying the pythagoras

theorem in the covariance-weighted space, as follows:

d2
1 = (µ1 − P )T Σ−1

1 (µ1 − P )− k2
1W

T
p Σ−1

1 Wp (2.6)

d2
2 = (µ2 − P )T Σ−1

2 (µ2 − P )− k2
2W

T
p Σ−1

2 Wp (2.7)

To obtain the maximum likelihood estimates of Wp, we would like to minimize d2
1 +d2

2. Since

the (µi − P )T Σ−1
i (µi − P ) terms are independent of Wp, we can drop the terms and instead

maximize

k1W
T
p Σ−1

1 Wp + k2W
T
p Σ−1

2 Wp

= (
W T

p Σ−1
1 (µ1 − P )

W T
p Σ−1

1 Wp

)W T
p Σ−1

1 Wp+

(
W T

p Σ−1
2 (µ2 − P )

W T
p Σ−1

2 Wp

)W T
p Σ−1

2 Wp

=
1

W T
p Σ−1Wp

[(W T
p Σ−1

1 (µ1 − P )) + (W T
p Σ−1

2 (µ2 − P ))]
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Since W T
p Σ−1Wp is a scalar quantity and we can constrain the length of Wp, we only need

to maximize

(W T
p v1) + (W T

p v2) (2.8)

where

v1 = Σ−1
1 (µ1 − P ), v2 = Σ−1

2 (µ2 − P )

The expression derived in (8) is the sum of the weighted distances of P from the centroids

µ1 and µ2. Suppose the point P is a lot closer to µ1 than µ2, implying |µ1−P | << |µ2−P |.

It makes sense then that d is dominated by the second term, since the line will be close to

µ1 anyway.

We now show how d can be maximized by introducing a new constraint. If we assume

that the vector Wp is coplanar with v1 and v2, it can be seen that we effectively want to

maximize the following

|v1|cosθ1 + |v2|cos(π − (θ + θ1))

with respect to θ, the angle between v1 and v2. Differentiating the expression, we obtain

−|v1|sinθ1 + |v2|sin(π − (θ + θ1)))

= −|v1|sinθ1 + |v2|sin(θ + θ1))

Setting it to zero to find the stationary point, we obtain

0 = −|v1|sinθ1 + |v2|sin(θ + θ1)),

sinθ1 = |v2|
|v1|sin(θ + θ1),

|v2|
|v1|(sinθcotθ1 + cosθ) = 1,

which gives

θ1 = cot−1((−|v1|
|v2|

− cosθ)
1

sinθ
)
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θ is the angle between v1 and v2, and can be computed as

θ = cos−1(
vT

1 v2

|v1||v2|
)

which gives Wp, and consequently k1 and k2, which in turn allows F, B and α to be computed.

2.3 Experiments

We created a prototype of the algorithm in MATLAB, and used it to compute the alpha

channel for several images. The results are shown in Figure 2.2 and Figure 2.3. While

Chuang’s method took minutes to compute, our method took only 1 second for the lighthouse

image (480 by 320), and 2.2 seconds for the lion image (576 by 864). As can be seen, the

algorithm was able to estimate the alpha channel and extract the foreground object correctly.

2.4 Discussion

We have presented a new closed-form solution to the alpha channel estimation problem

that yields fast implementations for maximum likelihood estimates of the alpha channel.

These claims are empirically validated by comparing the algorithm with existing methods

(we implemented all the algorithms in MATLAB) in computation time and quality. In our

experiments, our algorithm produced results comparable to those of existing algorithms while

requiring only a small fraction of the time needed by the fastest probabilistic algorithm.

The efficiency and quality of the new algorithm make it feasible to incorporate alpha

channel estimation into a wide range of computer vision and image processing algorithms.

In particular, complex and fuzzy boundaries have already been shown to be amenable to

extraction using alpha channel estimation.
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(a) (b)

(c) (d)

(e)

Figure 2.2: Alpha channel estimation experiment with the “lighthouse” image. (a) Orig-
inal image. (b) Foreground/Background/Mixture map. (c) Estimated alpha channel. (d)
Color quantization map. (e) Extracted foreground, composited against a black and a white
background.
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(a) (b)

(c) (d)

(e)

Figure 2.3: Alpha channel estimation experiment with the “lion” image. (a) Original image.
(b) Foreground/Background/Mixture map. (c) Estimated alpha channel. (d) Color quanti-
zation map. (e) Extracted foreground, composited against a black and a white background.
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Chapter 3

Object Extraction from Images using
a Sketching Interface

The task of extracting an object embedded in an image or a video stream is performed

frequently in many visual content creation applications. For example, artists creating mag-

azine covers routinely extract people or products from photographs to remove unwanted

background and compose the new images such that magazine titles appear to be occluded

by the object naturally. This operation is commonly called selection in digital image edit-

ing. Similar to the act of highlighting portions of text in a wordprocessor so that editing

operations such as cut-and-paste may be carried out, selection is one of the basic image edit-

ing operations that is frequently required. However, unlike text editors, selection in image

editing remains a difficult and tedious task for human users.

We would like to address this problem, and build tools to make image and video editing

easier. In chapter 3, I will present a new selection tool that not only allows high-quality

selections to be created, but makes it possible to use roughly drawn sketches to make the

selection. Figure 3.1 illustrates the application of the tool to a non-trivial selection task.

Figure 3.1(a) shows the original image from which the head of the crowned crane is to be

extracted. Also shown is a sketch drawn by a user that gives a rough indication of the

desired object. Figure 3.1(b) shows the resulting selection. It can be seen that the profile

of the crane’s head is fairly complex, and it would take a human user a fair amount of
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(a) (b)

Figure 3.1: Example of objection selection. (a) Original image, shown with sketch. (b)
Resulting selection. (Original photography by Gerard and Buff Corsi, California Academy
of Science)
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time and effort to delineate the boundaries manually. The sketch shown in Figure 3.1(a)

however can evidently be drawn quickly and without much skill. A semi-automatic tool

that computes the complex selection using a simple sketch, as shown in the example, thus

provides an improvement in ease-of-use over a fully manual tool while still producing high-

quality selections. This work first appeared in [91, 92].

Currently, a number of semi-automatic selection tools are commercially available. The

primary focus of these tools is the quality of the end result while providing maximum control

to the user. As a result, these tools usually require skillful user guidance and cannot be used

when the users do not have much time, such as during a live sports broadcast, or do not

have much dextrous control, such as on a mobile handheld device, or simply want to avoid

the monotony and tedium of selection, without compromising the quality of the selection.

To enable the use of sophisticated and high-fidelity graphical selection and manipulation

operations in these situations, we have introduced a semi-automatic selection tool that was

used to create the selection in Figure 3.1. The tool allows objects to be selected using rough

freehand sketches. The sketch-based interface is very natural for use in the emerging class

of tablet computers for a range of editing applications.

3.1 Previous Work on Selection

In this section we survey the existing body of work related to the object selection problem,

and discuss some of the motivation and objectives for our investigation. Traditionally, image

editing applications can be broadly classified by their underlying representation for graphical

content into two types: vector-based and image-based. Vector-based editors are most often

used to create abstract figures such as graphs and stylized illustrations, and represent visual

content with a collection of geometric primitives such as line segments and polygons. Image-

based editors typically deal with images captured from optical devices such as cameras

and scanners, and represent an image with a pixel array. In both cases, selection is a key
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operation: one has to pick out or specify the portions of a picture that are of interest before

manipulation operations like cut-and-paste can be performed. The problem is easier in

the case of vector-based systems since an explicit representation of the graphical content

is available. Image-based systems in general do not have explicit representations of the

visual content, and in many image-based editors the user has to manually delineate objects

embedded in images. In our survey of selection tools, we start with a discussion of vector-

based tools, followed by a survey of image-based tools.

3.1.1 Selection in Vector-based Editors

Given that selection in vector-based editors is more tractable, it is not surprising that the first

intelligent selection tools were created for vector-based editors. We examine two examples,

GRANDMA and PerSketch, as editors that went beyond the basic click-to-select way of

picking geometric objects.

GRANDMA

An early example of vector-based systems with a non-trivial selection tool is GRANDMA [?],

a toolkit that uses a marking interface to select objects and specify transformations. An

example of image editing with GRANDMA is shown in Figure 3.2.

The primary means of selection is the PACK operation, shown in Figure3.2(d), in which

a set of objects of interest are encircled by a stroke. The system then allows the user to

manipulate the selected group as a single unit. The user may also click-and-drag objects to

specify transformations (Figure3.2(e)-(f)).

PerSketch

PerSketch [76, 84, 85] is an augmented simulation of whiteboard sketching which operates on

line drawings. Figure 3.3 shows an example of the kind of operation supported by PerSketch.

In the example, a rectangle and a circle are first created, and the circle is then move so that it
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Figure 3.2: An example of vector graphics editing in GRANDMA. (a)-(c) A series of gestures
for creating a number of geometric objects, including a rectangle, an ellipse, and a line
segment. (d) Shows the selection operator that involves encircling the objects desired. (e)-
(f) Manipulation operations on the selected group of objects: duplication(e), rotation and
scale(f), and deletion(g).
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overlaps the rectangle, operations that can be done with conventional vector-based editors as

well. For a human user viewing the picture, new interpretations emerge from the interaction

between the circle and the rectangle. For example, the circle can now be viewed as its two

halves as one of the rectangle edges appear to cut the circle into two pieces. A conventional

editor would still consider the picture as being composed of the original two objects: the

rectangle and the circle. PerSketch, on the other hand, would attempt to find these new

interpretations and allow the user access to these new interpretations. As can be seen in the

third frame in Figure 3.3, the user is able to move half of the circle to the left edge of the

rectangle. In the forth frame, the two vertical edges from the original rectangle is removed,

resulting in a new elongated shape formed with pieces of the two original objects. Figure 3.4

shows how visual objects in a picture is represented as a collection of atomic PRIME objects,

and a collection of COMPOSITE objects assembled by grouping PRIME objects. Given that

any particular picture can have a large number of possible interpretations and groupings of

PRIME objects, the selection of COMPOSITE objects becomes an interesting problem. The

solution proposed in PerSketch is illustrated in Figure 3.5. The user simply draws a sketch

that is similar to the COMPOSITE object desired, and the system chooses the object in its

current database that best matches the sketch in terms of a number of geometric features

such as position, orientation, and bounding rectangle size.

While PerSketch provided a very natural interface for editing line drawings, the under-

lying perceptual grouping routines do not apply to pixel-array images. In order to create

similar selection tools for image-based editors, techniques for extracting visual object rep-

resentations from raw images are needed. This is however a difficult problem because fully

automatic analysis of an image and its decomposition into corresponding primitive elements

remain a subject of current research.
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Figure 3.3: An example of line drawing editing in PerSketch.

Figure 3.4: PRIME and COMPOSITE line drawing objects in PerSketch.

Figure 3.5: An example of selection in PerSketch.
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3.1.2 Selection in Image-based Editors

In our context, the key difference between image-based and vector-based systems is the

availability of exact representations for the visual objects in vector-based systems. With

image-based systems, such descriptor of visual content is not available, and needs to be

extracted from the array of raw pixels. There are two kinds of low-level representations for the

content of an image that are widely used by researchers and practitioners in image analysis:

edge maps and segmentation maps. Edges are linear features, and typically represent the

shape and location of object boundaries. A segmentation of an image assigns to each pixel an

id, and neighboring pixels with identical ids form regions that represent the spatial extent of

objects. The final selection in an image-based editor can be represented by a bitmap, where

each pixel has a binary value of 1 if it is a part of the selection, and 0 otherwise. A more

general representation allows the value to range continously between 0 and 1, and is called

the alpha channel [80]. In this section we shall examine a number of tools that produce

bitmap selections. Alpha channel-based methods will be discussed in the next section.

Intelligent Scissors

The Intelligent Scissors [67] and Image Snapping [40] techniques are tools that are based on

edges. Figure 3.6 shows how the tool allows a user to select an object by guiding a pointer

around the object boundary. In the figure, the pointer is shown as a cross, and its trajectory

(called the pointer trail) is shown as a white curve. It can be seen that as the pointer moves

along its trail, the tool identifies the salient contours in the image and places a second curve

that closely follows the actual object boundary. In Figure 3.6(c) it can be seen that the

second curve has formed a closed loop, and the resulting selection is shown in Figure 3.6(d).

Active Contours

Snakes, or active contours [53, 106, 12, 25] are also widely used techniques for identifying

salient objects in images. An active contour is a curve that evolves under two kinds of forces,
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(a) (b)

(c) (d)

Figure 3.6: Example of selection with Intelligent Scissors.

25



internal and external. The internal forces make the curve smooth, while the external forces

attract the curve to salient edges in the image. Interactive tools implemented with snakes

typically have the user draw an initial curve, and then allow the curve to fit the object

contours automatically.

Automatic Image Segmentation

As mentioned above, the segmentation of an image is also a commonly used representation

for the contents of an image. It is also a natural representation for the object selection

problem, since image segments generally correspond to parts of objects, and a selection of

an object can be obtained by choosing a number of image segments and forming their union.

The problem has been studied widely [90, 104, 6, 61], and remains an area of active research.

3.1.3 Alpha Channels and Diffused Boundaries

A common feature of the selection methods we have seen so far is that the final representation

of the selection is a bitmap, such that every pixel may either belong completely to the selected

object or be completely unselected. In most photographic images however, boundaries are

not as sharply defined. This is true even in high-quality stock photographs such as those

from the Corel Stock Photography collection [1]. Examples of diffused object boundaries

can be seen in Figure 3.7. In general, object boundaries are not sharp step edges, possibly

due to the following factors in the image formation process:

1. The object is not in focus (intentionally or otherwise).

2. The object is in motion.

3. Some objects, such as wispy strands of hair, are simply too small to be represented

fully by a finite-resolution digital image.

It is thus important for selection tools to be able to capture this diffusion of the boundaries.

In fact the ability to produce an alpha channel is one of the basic requirements of commercial
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(a) (b)

Figure 3.7: Examples of diffused object boundaries. Image is taken from the Corel Stock
Photography Collection. (a) Original image, the boxed portion of which is shown in detail
in (b), revealing examples of diffused edges. For high-fidelity image editing, the object
boundary details need to be fully captured with an alpha channel.

selection tools [23]. Unfortunately, the techniques used by these commercially available

selection tools are not published.

Alpha Channel Estimation

Recently an algorithm that estimates the alpha channel in the vicinity of object boundaries

was proposed [83]. With this “Alpha Estimation” algorithm, the colors of pixels in the

vicinity of object boundaries are modeled as mixtures of colors from the foreground object

and those of the background object. It has been shown to be able to extract objects with

detailed boundaries, given samples of “pure” foreground and background, and boundary

pixels. The algorithm use a mixture model to estimate the alpha channel value at all the

boundary pixels.

3.2 Algorithm Overview

A flow chart of the algorithm is shown in Figure 3.2. The inputs to the algorithm are

the sketches drawn by a human user and the image containing the object to be selected.

The output is the selection in the form of an alpha channel, with each pixel having a real

value ranging from zero (completely not selected) to one (fully selected). The algorithm we

propose involves solving two problems to allow high-quality object selection with freehand
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Figure 3.8: Schematic of the object selection algorithm.

sketches: mapping the sketches to the appropriate objects in the image, and computing

the alpha channel representation for the object. These two problems are solved using a

representation for the image structure that is extracted automatically from the given image.

This representation consists of a segmentation map and segmentation-guided triangulation

of the image into triangles whose vertices and edges reflect the shapes and spatial adjacency

of the segments.

First, we consider the problem of mapping freehand sketches to objects in the image.

We allow a user to draw sketches consisting of points, lines, and closed loops (or simply

“loops”). Points are typically mouse clicks, and are typically used to select small objects.

Lines are non-self-intersecting curves used to indicate object boundaries. Loops are curves

that start and end at the same point, and are used to indicate the spatial extent of objects.

We allow the user to specify the selection with different degrees of precision, according to

the complexity of the image, so that where there is no ambiguity the user should be able to

be less precise while drawing the sketches. Our solution to this first problem is shown in the

flow chart as sketch processing, and its output is a set of segments whose union forms an
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initial selection, and a set of triangles whose vertices straddle the boundary of the selection.

These triangles that we refer to as the set of boundary triangles also completely cover the

boundary of the selection, and thus decompose the spatial vicinity of the boundary into

triangles.

The initial selection and the boundary triangles is then passed to the algorithm shown in

the flow chart as local alpha estimation. The objective of this stage is to compute the final

selection using the alpha estimation algorithm [83], a method for factoring out the foreground

objects contribution to a pixels value when the pixel value is a mixture of the foreground

object and the background. The alpha estimation algorithm, as originally proposed, assumes

that pure samples of the foreground and background are given by a user. We automate this

process by using the initial selection to get the pixel samples. The problem of estimating the

alpha channel over the entire boundary is also broken into small, local subproblems using

the boundary triangles. The final selection is then obtained by combining the alpha channel

computed within each boundary triangle. In the following sections, we present the details of

the algorithms used.

3.3 Image Segmentation

We use a segmentation of the image to represent groups of pixels that form objects or parts

of objects. The algorithm we use is binary-split vector quantization in color space. For each

pixel in the image, we create a three-tuple (r,g,b), with one component for each color space

component. Initially the data points will all be placed in a single cluster. We split this

cluster into two at its mean along the direction of largest variation, and recursively split

the resulting clusters until the number of data points in each is below a given threshold.

Typically we let the threshold be one half, quarter, eighth, or sixteenth of the number of

pixels in the image. The cluster label for the pixels thus forms a raw segmentation map.

We then apply a morphological “majority” filter that replaces the label of a pixel by the
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value that occurs most frequently within a square window centered at the pixel. We then

relabel the pixels so that each 4-connected component in the segmentation map has a unique

label. The segmentation computed by this procedure is an approximate representation for

the spatial extent of objects in the original image, although shape details are lost due to

the morphological filters employed. However, as we will see, this form of segmentation is

adequate for our purposes.

3.4 Simplicial Decomposition

The segmentation map provides a pixel-resolution approximation of the objects in the image.

While this form of representation for image structure is already useful for many applications,

it is still not sufficient for mapping the sketches to the segments. For example, it is still

difficult, in general, to answer the question: “is a segment to the left side or right side of

a line ?” when the line cross the segment boundary and parts of the segment is on the

right side, while other parts of the segment fall on the left side. This is, of course, the

type of question we need to answer in order to map freehand sketches onto image segments.

Figure 3.9 illustrates the way we answer the above question. The two regions A and B

have a curved shared boundary, which intersects the thick black line, so that no segment

is strictly on one side of the line. However if we can represent the two segments by two

points, then there will be no ambiguity no matter how the line is drawn. Obviously, such a

representation is only applicable in the local vicinity of the points. In order to fully represent

the shape and spatial configuration of a segmentation, we also need to decompose it into

small, manageable pieces such that the geometric queries necessary for the object selection

problem can be answered. In this section, we will describe how such a representation can

be computed. We propose that a simplicial decomposition of the image into triangles be

used. In order for the triangles, edges and vertices to reflect the spatial characteristics of the

segmentation map, we require the triangulation to satisfy the following constraints:
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Figure 3.9: Using points to represent the relative positions of regions.

Figure 3.10: Examples of valid and invalid edges in the desired triangle decomposition: Edges
e1 and e3 are valid, while edges e2 and e4 are invalid.

1. All vertices lie on the medial axes of the segments.

2. For an edge between two vertices, one in region A and one in region B, the edge must

lie entirely in the union of the two regions.

3. Each triangle must be contained in at most three regions.

The first property ensures that vertices are always inside the respective segments they

are representing and are not positioned too near to boundaries. The second property ensures

that the triangles formed reflect the adjacency relationship well, in the sense that an edge

is always between two vertices representing adjacent segments. The third constraint ensures

that segment boundaries are always enclosed by vertices representing the respective segments.

Figure 3.10 illustrates the second property. It is worth noting that the example edge e3

cuts the region boundary more than once, but is still considered a valid edge because it lies

entirely in the union of the two segments. Edge e4 is invalid because its two vertices lie in

the same region, but the edge passes through two different regions.

The algorithm for triangulating the segmentation map is essentially a procedure for sys-

tematically covering the segment boundaries while choosing points and adding triangles that
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Figure 3.11: Examples of openings and junctions. The diagram shows a segmentation map
with six segments, shown in different shades of gray.

satisfy the constraints. We need to define a few terms to facilitate the description: a pair

of adjacent regions meet at their shared boundaries. We call each continuous piece of the

shared boundary an opening. The word opening is used because in a triangulation there will

be at least one edge passing through each opening, and these edges can only pass through

this piece of shared boundary between the two regions-an opening. Junctions are points in

the segmentation map where three or more regions meet. In the case of a digital image,

where pixels are on a rectangular grid, at most four regions can meet at a point. Examples

of openings and junctions are shown in Figure 3.11. Openings are shown as solid black

lines and junctions white dots. Openings X and Y are on the share boundaries of the same

regions, but the two are distinct. Opening Z forms a closed loop. Openings that do not

form loops will have two end points, each one either a junction or a point at the edge of

the image. Each opening thus can have two, one, or no endpoints. The main steps of the

decomposition algorithm are as follows:

• Triangulation Algorithm

1. Cover each junction with a triangle.

2. Merge vertices within each segment as much as possible.

3. Cover openings with 2,1 or 0 endpoint(s).

4. Cover the remaining area in the image.
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(a) (b) (c)

(d) (e)

Figure 3.12: Steps in the triangulation algorithm. (a) Cover the junctions. (b) Cover the
opening that has two covered end points. (c) Cover the openings that has one covered
end point. (d) Cover the openings with no end points (in this case a loop). (e) Cover the
remaining parts of the image between the hull of the triangles and the border of the image.

Figure 3.12 illustrates the steps in the algorithm. We now discuss the individual steps in

more detail.

3.4.1 Covering Junctions

Triangle placement starts at the junctions. Where three regions meet, we pick one vertex

from each of the three region skeletons corresponding to the junction such that they form

a triangle with edges that are valid. At junctions where four regions meet, we place two

triangles. The two cases are shown in Figure 3.13. We use the following goodness measure

for a triangle:
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(a) (b)

Figure 3.13: Placing initial triangles at junctions. (a) At a three-region junction, one triangle
is placed. (b) At a four-region junction, two triangles are placed. In a digital image, these
two cases are exhaustive.

∑3

i=1
wi

C+P
θmin

where

wi is the depth of a vertex i, its distance from

the nearest boundary of its containing segment

θmin is the minimum of the three internal angles

of the triangle

P is the perimeter of the triangle

C is a constant

Thus we favor small triangles with large internal angles, and vertices that are positioned deep

inside their respective segments. Search for the triangle proceeds in the following manner:

we rank all points on the respective segment medial axes by their depths, so that vertices

with large depths are highly-ranked. The search is then constrained by using only the points

in the 90 percentile of each of the segment medial axes involved. With this small set of

points, we examine all possible triangles and pick the best. If no triangle is found due to the

vertex weight constraint, we drop to a lower percentile and redo the search. Figure 3.14(a)

illustrates a typical set of triangles satisfying the tesselation constaints found with this search

procedure.

Figure 3.14(b) shows another set of triangles satisfying the same constraints, but use

fewer distinct vertices. We obtain this latter result by a procedure that merge all possible

vertices within a segment. For each vertex v, we call the two vertices on the same triangle

34



(a) (b)

Figure 3.14: Vertex merging. (a) The segmentation map, shown with the initial set of
triangles placed at the junctions. (b) The result of vertex merging.

its neighbour vertices. We say that two vertices can be connected if there is a valid edge

between the two vertices. Two vertices can be merged if they each can be connected to

the neighbours of the other vertex. Generalizing, a vertex can be added to a set of vertices

with a neighbour set formed by the union of all the neighbours of the vertices of a set if the

vertex can be connected to all vertices in the neighbour set and all vertices in the set can be

connected to the two neighbours of the new vertex. We use a greedy procedure to identify

a number of maximal merge sets by starting with a single vertex and then incrementally

added to the merge set vertices that can be merged with the vertices in the set. A merge

set is maximal when no vertices from the same segment can be added to it. We then merge

the vertices in the set and start growing the next merge set by a remaining vertex not in the

merge set. We repeat this until all vertices have been included in a merge set. In the worst

case, all merge sets contain only one vertex, and no merging occurs.

3.4.2 Openings with Two End Points Covered

Since the initial set of triangles are placed at junctions, and junctions are endpoints for

openings, each initial triangle thus cover the endpoints for either three or four openings. This

property is retained by the new set of triangles obtained by the vertex merging operation.

Unless an opening ends at the border of the image or forms a closed loop, both its end points

would be covered by these initial triangles. We identify such openings and place additional

triangles between the two initial triangles at its two ends to completely cover these openings.
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Figure 3.15: Traversing an opening and covering it with triangles. Triangles that have been
placed are shown with thick edges, while the candidate triangles are shown with thin edges.

Figure 3.15 shows such an opening, with its two end points covered, leaving the middle

portion still uncovered. It can be seen from the diagram that the area in which the triangles

need to be placed is bounded by the two skeletons, and the two triangle edges at the two

ends. This suggests that we can cover the opening by traversing along the opening from one

end to the other, placing new triangle vertices on the two opposite skeletons. The traversal

algorithm we use is as follows:

• Adding Triangles by Skeleton Traversal

1. Given an opening with its two end points covered by two triangles, identify the

two skeletons, and the starting and ending triangle edges.

2. The starting and ending edges each have a vertex on the two skeletons. These are

the starting and ending vertices for each of the skeleton. Use Dijkstras shortest

path algorithm to find a path on each skeleton from the starting vertex to the

ending vertex.

3. On each of the skeleton paths, traverse the path. At each point along the traversal,

while the following conditions are true:

(a) The point is connected to the two vertices of the starting vertex (and thus is

able to form a candidate triangle using the starting edge and the new point).
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(b) In the new candidate triangle, the angle at the new point is larger than a

preset value θmin. This avoids the creation of thin “sliver” triangles.

(c) The new point has not reached the end of the path.

4. Given the two new candidate triangles, pick the one that covers more of the

opening. Add the new triangle to the existing set. Add new triangles on the

other side of the skeleton on which the new point was added, using the new point.

5. Let the new starting edge be the new edge between the two skeletons that is added

with the new triangle.

6. Repeat steps 3-5 until the starting edge coincides with the ending edge

3.4.3 Openings with One End Point Covered

If an opening starts at a junction and ends at the edge of the image, it would have only one

end point covered. We can treat this end point as a junction by having a virtual, infinitely-

thin segment at the edge of the image, running around the frame of the image. This is

illustrated in Figure 3.16. Then opening end points at the edge of the image can be thought

of as a junction involving the virtual segment. In order to place a triangle covering this

junction, a vertex would need to be placed at the point where the opening meets the edge

of the image since that is the only point on the virtual segment that can be connected to

both of the skeletons for the opening. Now we can choose a triangle in the same manner as

before. The portion of the opening between the new triangle and the triangle at the other

end of the opening can then be covered by vertex merging and skeleton traversal.

3.4.4 Openings with No End Point Covered

In the case where both opening endpoints are at the edge of the image, we can place two

triangles at the two ends as described above, and then covering the rest of the opening by

vertex merging and skeleton traversal between the two new triangles.
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Figure 3.16: Using a virtual segment at the edge of the image.

Openings forming loops do not have endpoints, and as such do not have initial triangles.

We simply choose an edge between the two respective region skeletons, and add triangles

to cover the loop formed by the opening by skeleton traversal. If there are vertices already

placed on the skeleton, we can use the existing vertex to place the edge. We simply use the

chosen edge as the starting edge and also the ending edge.

3.4.5 Covering Borders

Finally, we need to place triangles in the remaining portion of the image, between the image

boundary and the triangles placed thus far, to ensure that the entire image is covered with

triangles. All the regions that need to be covered in this step is by now bounded by the edge

of the image and the hull formed by the triangles already placed. We just need to identify

these uncovered regions, and again use the skeleton traversal method to cover these regions,

using the “virtual skeleton” of the virtual segment at the edge of the image and the hull of

the existing triangles as the opposite skeleton. During this traversal, we use the area covered

to choose between candidate triangles. As a result of using the virtual segment reasoning,

there will always be a vertex at the corners of the image, since those are the only points

along the virtual skeleton that can be connected to points on the two edges meeting at the

corner. This is illustrated in Figure 3.16.
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3.5 Sketch Processing

Once we have the segmentation and the triangulation, we can use them to map the input

sketches to image objects. This section describes the mapping procedure. Recall that the

three sketch elements are as follows:

1. Points for specifying small objects.

2. Lines for describing boundaries.

3. Loops for describing image/object regions.

Recall also that the end result of all three types of sketch processing is to classify the set of

image segments into two sets: foreground and background. The union of all the foreground

segments forms the initial selection. For all three types of sketch elements, the entire set

of segments are initially labeled as belonging to the background, and we thus start with an

empty selection.

Of the three types of sketch elements, the segmentation map is used in the processing

for points and loops, while the triangles are used to process lines. Points are the simplest to

process: for each point, we pick the segment label for the pixel under the point and add the

corresponding segment to the foreground. Loops indicate the approximate spatial extent of

the object. For each segment in the coarse segmentation, we find its intersection with the

region enclosed by the loop. Segments with a significant portion of its pixels in the loop are

then chosen as the foreground object segments. Lines are processed as follows:

1. Find all triangles that touch the line.

2. For each such triangle, classify the vertices (and thus the centroids) as either foreground

or background depending on the side of the line they fall on (predetermined, using the

right-hand rule).
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3. Form the union of all the sets of foreground vertices from each triangle and use it

as the set of foreground centroids selected by lines. All other centroids then are the

background centroids. The definition of this polarity is an arbitrary decision, though

it is important for all relevant stages of the algorithm to adopt the same convention.

The specific meaning of points and lines with respect to the object selection task is now

well-defined. The benefit of using the image structure to provide a context for sketch pro-

cessing is that it allows variations in the sketch while providing an unambiguous meaning

of the sketch. For example, a point can fall onto any part of a segment to select the seg-

ment centroid. Lines indicating a boundary between two segments can be located anywhere

between the two corresponding centroids, and the triangulation establishes an unambiguous

correspondences between each line and the relevant segments in the image.

3.6 Local Alpha Estimation

At this point, we have labelled each segment as being in the foreground or the background.

We also have the triangulation of the segmentation. Now we can compute the final selection,

in the form of an alpha channel map and an estimate of the foreground pixel colors factored

out from the image. We use the triangulation to partition the computational task into smaller

pieces, and apply the object extraction procedure independently in each piece. We partition

the problem as follows: identify all triangles consisting of both foreground and background

vertices. We call these the boundary triangles since they define the vicinity of the object

boundary. The entire subsequent object extraction computation is performed within these

triangles independently. The rest of the triangles are either completely contained in the

foreground or in the background. The alpha channel value for pixels inside these triangles are

uniformly one for pixels in foreground triangles and uniformly zero for pixels in background

triangles. We now describe the algorithm that applies to each boundary triangle (illustrated

in Figure 3.17). We apply the alpha estimation algorithm [83] to the pixels inside each
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Figure 3.17: Local alpha estimation. (a) Image with a boundary triangle. (b) Linear dis-
criminant. (c) Alpha channel estimated. (d) Object extracted.

triangle. Instead of having user-provide pure sample pixels, we automatically provide these

samples as follows: we first perform a finer-scale segmentation on the pixels within each

triangle. To ensure that this local segmentation is of a finer scale than the original, global

segmentation (so as to capture more details locally), we set the size threshold to a quarter

of the number of pixels in the triangle. This ensures that the pixels will be split into at least

four clusters. Given, from the triangulation constraints, that each triangle will contain pixels

from at most three global segments, the local segmentation is guaranteed to be more detailed.

We then find the spatial centroid for each of these clusters, and classify these new cluster

centroids into foreground and background using a linear discriminant that approximates the

initial selection boundary in the triangle. We use Fisher’s Linear Discriminant [35] , and let

the discriminant pass through the following point:

w = nb

nf+nb
µf +

nf

nf+nb
µb

where

nf , nb are the number of pixels in the foreground

and background groups respectiely, and

µf , µb are the corresponding centroids for these

local pixel populations

We then sample pixels from the respective cluster in the vicinity of the centroids and

use them as the pure samples, and estimate the alpha channel value for every pixel in the

triangle.
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The alpha channels for the boundary triangles combine to yield the final selection. A

question one may ask is whether these independently computed selections will produce a

seamless result. To answer this question, recall the manner in which the selection problem is

divided into subproblems of selection within triangles. Each pair of adjacent triangles share

two vertices, and therefore, the color population of the segments corresponding to those

vertices. These segments remain unaffected by the triangulation, thus ensuring continuity

across the edges of the triangle.

3.7 Experiments

Our first results illustrate the use of points and loops for selection, and they are shown in

Figure 3.18. In the case of points, the user simply clicked on the object, adding object

parts until the desired object is selected entirely. Loops are more intuitive, where the user

would simple enclose the desired object with a loop. Selection with lines offfers the most

freedom to the user, and some examples are shown in Figure 3.19(a)-(b). The same figure

also shows how the same selection can be obtained using points and loops. This shows how

the tool allows a reasonable degree of freedom in making the sketch. Figures 3.20 to 3.24

illustrates the operation of the algorithm on a high-resolution image. We can also use

the triangulation to further decompose the original coarse segments into smaller pieces, such

that each piece corresponds to a vertex. The new decomposition is easily found from the

triangulation: examine each triangle with two vertices that fall in the same segment. Identify

the edge between these two vertices and find its midpoint. Draw a line from the midpoint to

the third vertex in the triangle. If the edge is shared by a second triangle on the other side,

do the same for the second triangle. Now cut the segment containing the two vertices along

these lines. An example segmentation induced by the triangulation is shown in Figure 3.25

. The resulting segments each represented by a vertex in the triangulation, has the property

that if two segments are adjacent, then there is a valid edge between the two representative
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Figure 3.18: Examples of selection by points and loops. (a) Original image shown with
sketch. (b) Resulting selection composited against a black background. Crane example
cropped from an image by Gerald and Buff Corsi, California Academy of Science.

(a) (b)

(c) (d)

Figure 3.19: Different sketches that yield equivalent results. (a)-(b) Lines. (c) Point. (d)
Loop.
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Figure 3.20: A high-resolution image, shown with a line drawn by a user.
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Figure 3.21: The segmentation used for the selection.
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Figure 3.22: The Delaunay triangulation of the segment centroids, shown with the sketch.
Light-color discs indicate the selected foreground centroids.
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Figure 3.23: The boundary triangles, shown with the local linear discriminants.
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Figure 3.24: Extracted object, composited against a black background.
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Figure 3.25: Structure-induced Segmentation. The original segment boundaries are shown in
thick black lines, the triangulation is shown in thin, lightly-shaded lines. The new segment
boundaries induced by the triangulation is shown with thin black lines.

vertices. This is a reasonable way to decompose an image into small pieces, and is useful

in a number of applications. For example, one can use these segments in matching and

recognition tasks, among others.

3.8 Discussion

We have presented a method by which simple freehand sketches may be used to select objects

with complex boundaries. We have demonstrated with experimental results that the method

is able to extract complex objects with a minimal amount of user input.

Ongoing work include improving the computational complexity of the simplicial decom-

position stage and studying additional constraints on the triangles. For example, it might be

interesting to place the vertices such that the edges can be found automatically by computing

the Delaunay triangulation of the vertices. It may also be interesting to place the vertices

such that the voronoi diagram of the vertices approximate the actual segment boundaries.
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Chapter 4

Object Tracking with Faceted
Appearance Models

The modeling of object appearances is an area that has been well-studied in recent years,

and is important for solving many problems in computer vision, such as object recognition

and pose estimation. It is also a key issue in object tracking, since the appearance of the

object being tracked can vary dynamically. For example, a human head can appear very

different when viewed from the front and the back. In order to track objects over a video

sequence, it is thus necessary to take their appearance variation into account.

A popular approach for object appearance modeling is to treat an image as a point

in a high-dimensional space. For example, a 20 pixel by 20 pixel intensity image can be

considered a 400-component vector, or a point in a 400-dimensional space. Algorithms using

this representation are often referred to as being appearance-based or view-based, and they

have been successfully applied to object recognition and detection [10, 68, 101]. In [68, 73],

Nayar showed that a set of images of an object taken under varying viewing parameters forms

a continuous set of points in the high-dimensional space, commonly called an appearance

manifold. If the appearance manifolds of a number of objects are available, then object

recognition is simply the problem of finding the manifold that is nearest to a given sample

point. If the pose parameters are available for the point on the manifold that is nearest to

the sample point, they can also be used as a pose estimate for the sample point. It should
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be noted that although the term ‘appearance manifold’ is used commonly in the literature,

the set of images of an object under varying viewing parameters in general do not satisfy all

the properties of a manifold as defined in differential geometry. In the rest of the paper we

shall use the term ‘appearance set’ to refer to such a set of images, and the term ‘appearance

model’ to refer to representations for the set.

In order to use appearance sets in computational algorithms for recognition, it is necessary

to have a representation that supports nearest-point querying efficiently. It is also essential

that an appearance model can be built from a finite set of image samples. In this paper

we propose the use of a construct we call faceted models to represent an appearance set.

The key distinguishing feature of faceted appearance models from existing representations is

that the adjacency information in the sample set is explicitly encoded, and used to enforce

a topological constraint that improves representational accuracy without incurring excessive

costs in terms of computation time and storage space.

4.1 Related Work

The tracking of point features across video frames is probably the most widely-used low-level

motion cue. Feature tracking is most commonly achieved by following an optic flow field [60,

14, 45, 89], Once a set of points are reliably tracked, camera motion, scene structure [97],

and even flexible and deformable object shape [18, 19, 99, 98] can be recovered, typically by

applying a rank constraint.

In many applications, it is also important to have an estimate for the boundaries of

objects in a video stream. For example, in medical imaging it is often useful to be able

to track the shape of internal organs as they move. In these cases Active Contours, or

Snakes [53, 49] are widely used. While the earlier embodiments of Snakes are essentially

intensity gradient-descent methods, contour tracking techniques based on different cues [100],

or different computational strategies [24] have also been proposed.
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In blob tracking [13, 26, 52, 79], typically a window of fixed size and shape is used to

represent the spatial support of the object being tracked. Tracking is then performed to

minimize the variation of a number of (typically) statistical measures of the image pixels

within the window. Blob tracking techniques are particular useful when the image is noisy

or cluttered, for example, when tracking commuters on a subway platform.

While blob tracking techniques are robust and usually allow variations in object appear-

ance, smoothness constraints on statistical measures may not be sufficient in certain cases.

In such cases, blob tracking with an object-specific appearance model has been proposed.

The Eigentracking approach uses a PCA-based appearance model, coupled with a robust

matching framework [15, 16, 17, 59], while the Active Appearance Model approach allow

general shape deformation in the matching process [28, 30, 29].

4.2 Appearance Modeling

In this section we review the basic ideas in appearance modeling, and present the motivations

for using faceted models. Typically, an appearance model is constructed from a finite set

of samples, and supports a nearest-point query: given an arbitrary new test sample, return

the sample from the model that is nearest to the test sample. The simplest example of an

appearance model is simply the original set of samples, and the nearest-point query is simply

nearest-neighbour search.

Perhaps the most widely used appearance model is the principal components of the test

samples. If a set of p appearance samples consists of n × m images, the set can be written

as a nm × p matrix A, with each column vector being an image scanned in some standard

order (for example, row-major order). The principal components of A can be found by

SVD, which gives A = UΣV T . The columns of U then contains the principal components

of A, corresponding to the singular values arranged in decreasing order. The first t columns

of U can be used to form the basis for a subspace, and a new nm × 1 vector e can be
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approximated as e∗ =
∑t

i=1 ciUi. If each ci is computed by ci = eU̇i, then e∗ is the least

squares approximation of e [68], and is used as the point returned in a nearest-point query.

Typically, the number of principal components is predetermined, and is chosen empirically

to balance computational and classification performance. This PCA approach allows for

storage compactness and increased generalization power, and has been successfully applied

to a number of problems [101, 10].

In PCA appearance modeling, essentially an entire unbounded linear subspace is used to

represent the appearance of each object. However this is not always desirable, as the subspace

would also contain points that are very far away from the original sample set. [68, 73]

proposed fitting a spline to the samples after projecting them onto a lower-dimensional

subspace. The spline can then be densely sampled and the resulting set of points can be

used in the nearest-neighbour search, thus allowing the manifold to support nearest-point

queries at arbitrary precisions. Clearly if we estimate object pose parameters with this

approach, the precision is directly related to how densely the spline is sampled. Of course,

this can result in a large number of sample points, and consequently a large computational

cost in the nearest-neighbour search. However performing PCA helps to lessen the impact,

and also clever data structures can be used to speed up the search process [73].

Among the appearance models reviewed thus far, the PCA approach offers the most

compact representation, but may suffer from over generalization. While the nearest point

query is economical computationally, computing the principal components can be expensive

especially with a large sample set. This also discourages dynamic updates to the appearance

model, since the principal components need to be recomputed as new samples are added.

In contrast, the simple nearest-neighbour approach allows new samples to be added and re-

moved dynamically without any penalties, although the entire set of image samples need to

be stored. The precision of the model is also directly related to the sampling density, result-

ing in an undesirable tradeoff between representational precision and storage requirements.

The spline approach addresses the problem with over generalization while also offering bet-
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ter storage efficiency using PCA. The fitted spline also allows the model to support queries

at arbitrary precisions. Using PCA however also means that dynamic updates to the ap-

pearance model can be expensive, and that the number of principal components need to be

predetermined.

In the next section, we will introduce an alternative appearance model that is a hybrid

of the PCA approach and the nearest-neighbour approach. The key component of the new

model is the explicit specification of adjacency information among samples, which frequently

is available in appearance samples. For example, for the set of images of an object placed

on a turntable (such as those in the COIL database), successive images are adjacent to one

another, with the last image also adjacent to the first to form a ring. A facet grouping rule is

also specified that forms multiple subsets of the samples set, each one consisting of samples

that are connected via the adjacency relationship. We call these subsets facets. Nearest-

point querying is then carried out in a two-step procedure: first select a facet that is close

to the test sample (by a specified distance measure), and project the test sample onto the

linear subspace spanned by the facet samples to give the nearest model point. The subspace

projection is similar to the PCA approach, except that the model has a different subspace

for each facet. Also, the implicit dimensionality of the facet subspace can also vary among

the facets, resulting in a richer representation. There is also no need to pick the number

of principal components for use in the model: since a facet is typically a small subset of

the entire sample set, we can directly use the facet samples as basis vectors. It is also easy

to update the appearance model dynamically since a new sample point would typically be

adjacent to only a small number of existing samples, and only a small number of facets are

affected.
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4.3 Faceted Models

We now give a more formal description of faceted models. A faceted model M = (F, G, X)

consists of a set of sample points X = {x1, . . . xn} and a graph G = (V, E) where V =

{v1, . . . , vn} is the set of vertices, where there is a one-to-one relationship between sample

points and vertices. E, the set of edges, has an element for each pair of image samples

that are adjacent in the appearance set. F = {f1, . . . , fm} is the set of facets, where each

facet is a connected subgraph of G. The facets are formed by specifying a grouping rule.

For example, facets can be defined as the individual sample themselves, in which case the

faceted model reduces to the nearest-neighbour model. The PCA model can be thought of

as a faceted model where the graph consists of a single connected component and there is

only one facet which is made up of all available samples. A more interesting example is that

each edge in the graph G is a facet, or the edges in G along with samples that are adjacent

to the two samples on the edge. In the case where the graph is a triangle mesh, a facet can

be a triangle, or a triangle and adjacent samples. It should be noted that facets are not

mutually exclusive and do not partition the graph into disjoint pieces. Instead neighbouring

facets are usually overlapping.

During the nearest point query, a facet needs to be selected from the model before

subspace projection can take place. We use a minimax distance measure for selecting the

facet, i.e. for the test sample y, the facet fk is chosen if

k =
arg min

i

 arg max

xj ∈ facet fi

(‖y − xj‖)


The nearest point is then obtained by projecting the test sample onto the subspace spanned

by the samples in the selected facet.
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Figure 4.1: Faceted Appearance model for “girl” sequence. The ‘T’ junction captures the
appearance variations when the subject tilts her head from side to side.

4.4 Object Tracking Experiments

In order to test the ability of faceted models in appearance modeling, we used it to perform

view-based object tracking. In all our experiments, the grouping rule is to form one facet

for each edge in the graph, and also adding samples that are immediately adjacent to the

two samples on the edge.

In our first object tracking experiment, we use a sequence available from the Stanford

Computer Vision Lab [13]. We picked the “girl” sequence as it shows a person moving around

and exhibits a wide range of appearance variation. We picked a number of representative

appearance samples from the sequence and set up a facet appearance model with topology

as shown in Figure 4.1. The samples chosen capture the appearances of the girl at different

distances from the camera, and also the views when her back was facing the camera. As

can be seen in the figure, the topology of the model has a ‘T’ shape, with the short vertical

portion capturing the view variations as the subject tilts her head from side to side.

Figure 4.2 shows the operation at each step. A sliding window is placed over a range of

positions, and at each position the pixels within the window is used to form an appearance

sample that is then used to perform the nearest point query with a given faceted appearance

model. The euclidean distance between the test sample and the model’s nearest point is then
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Figure 4.2: Model matching in each step of tracking algorithm. Left image shows the
original frame, with a red rectangle indicating the region over which the matching window
was centered. The middle image shows the model matching goodness values for the window
centered at each pixel position. Lighter values indicate better match. The right image shows
the same goodness values, rendered as a 3D plot. It can be seen that the matching goodness
peaks at a specifiy point, indicating that in the current frame the object is in the window
centered at that point.

Figure 4.3: Tracking results for “girl” sequence.
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a measure of how well the model describes the pixels in each window. The goodness map is

then high when the distance is small. As can be seen in the figure, the goodness map peaks

at the position where the window encloses the correct object being tracked. This position

of best goodness is then returned as the position of the window for the current frame. A

search window is then placed in the next frame, centered at the current position, and the

same matching procedure is repeated.

The tracking algorithm is initialized by hand with the window position in the first frame.

Some of the frames from the tracking results can be seen in Figure 4.3. The algorithm

successfully tracked the head of the girl throughout the entire sequence of 500 frames. One

of the interesting aspects of using a facet model for tracking is that the chosen facet along

with the interpolation coefficients of the facet’s samples computed during the nearest-point

query provides some pose estimate for the object being tracked. We created an animation

(shown in the movie file attached with the paper), where we show a marker indicating the

specific part of the faceted model that matched the object’s appearance in each coresponding

frame by using the coefficients computed to interpolate the coordinates of the nodes of a

graph depicting the model topology.

We also tested the algorithm on a number of video sequences captured from broadcast

television sporting events, and the results are shown in Figures 4.4, 4.5, and 4.6. In each

case, object appearance samples are again chosen manually, and here the faceted model’s

topology is simply a chain of image samples, in the order in which they appeared in the

video sequence. As can be seen, the algorithm successfully tracked the objects even though

many of these sequences had targets that exhibit a very wide range of motion and undergo

large appearance changes.
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Figure 4.4: Faceted Appearance Model and tracking results for the “dunk” video sequence.
The five appearance samples used for tracking are shown at the bottom.
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Figure 4.5: Tracking results for the “football” video sequence. The appearance samples used
for tracking are shown at the bottom.
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Figure 4.6: Tracking results for the “skating” video sequence. The appearance samples used
for tracking are shown at the bottom.
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4.5 Conclusions

We have proposed a new, alternative model for object appearances, and tested it by using

it to track objects that exhibit appearance variations in video sequences. Based on the

experimental results, it is clear that faceted appearance models are capable of capturing

the kinds of appearance variations that can be observed in real video sequences. In all the

experiments, even though a fairly sparse set of appearance samples were used, the objects

were still successfully tracked over fairly long sequences.

Using faceted models to model object appearance offers a number of advantages by ex-

ploiting adjacency information that is frequently available in appearance samples. Instead

of using a global dimensionality for the model’s linear subspace, faceted models take into

account the fact that the model subspace dimensionality may vary across local neighbour-

hoods in the appearance set. Faceted models thus provide a richer representation for the

appearance set, and obviates the need to specify the number of principal components to

use. Faceted models are also easy to update dynamically, as new samples added will only be

adjacent to a small subset of the appearance model, and thus have bounded impact on the

existing model.
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Chapter 5

Eye Gaze Estimation with Faceted
Appearance Models

The ability to detect the presence of visual attention from human users, and/or determine

what a human user is looking at by estimating the direction of eye gaze is useful in many

applications. For example if a graphics renderer knows which part of the display the user is

looking at, it can adapt itself such that more details are shown where the visual attention

is directed. In behavioural studies gaze detection and estimation are also invaluable. For

example, the frequency with which a pilot looks at a panel display, and the length of time

required to read off the information could be used to measure the effectiveness of the display.

Perhaps the application area that would benefit the greatest with the maturation of vision-

based gaze estimation techniques would be in human-computer interaction [103, 51, 41].

With the availability of affordable imaging hardware and computational power, eye trackers

may well become standard issue on personal computers in the near future.

5.1 Previous Work in Eye Gaze Estimation

Not surprisingly, eye tracking has attracted the interest of many researchers and engineers,

and eye trackers have been commercially available for many years. While the most widely

used methods today are based on early ideas, newer methods are being enabled by the

increase in computational power. For a comprehensive coverage of the earlier literature the
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reader is referred to [110]. In this survey we would like to cover the methods that have

remained popular for completeness, and place more emphasis on promising methods that

may lead to the next generation of eye trackers. We thus organize the works studied into

the following three categories:

1. Methods Requiring Physical Contact. This part of the survey briefly covers some

of the earliest eye tracking works, and includes all the eye trackers requiring physical

contact with the eye, including contact lens-based techniques.

2. Non-contact Optical Tracking. This portion covers most of the techniques that

are in widespread use today in commercially-available eye trackers. They typically

involve delicate illumination and measurment instrumentation uses a certain specific

optical phenomenon to estimate the eye gaze direction. Though more acceptable than

the methods that require physical contact with the eye, usually the user’s eye and/or

head movement is severely constrained when optical tracking methods are employed.

3. Vision-based Tracking. This part of the survey covers the more recently proposed

computer vision-based approaches to eye tracking that typically attempt to build non-

intrusive eye trackers that allow a greater degree of freedom in eye and head movement

than are allowed in optical tracking systems, and may lead to eye trackers that are

robust enough to be used by casual users, children, and in assistive devices.

We will also examine some proposed applications for eye trackers, and conclude with a

discussion of possible novel approaches to gaze estimation.

5.1.1 Methods Requiring Physical Contact

Many of the first techniques for eye tracking requires some device to be in physical contact

with the eye or the face. For example, in [34], mechanical linkages to recording pens were

attached to the eye directly by a plaster of paris ring. Artificial landmarks have also been
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(a) (b)

Figure 5.1: Scleral search coil-based eye tracker made by Skalar Medical, a commercially
available eye tracker that requires the subject to put on a contact lens with a search coil. (a)
Search coil embedded in contact lens. (b) The outer frame that generates the electromagnetic
field.

placed on the eye to act as tracking features: a globule of mercury [9], chalk, and egg

membrane have all been used for optical tracking. A small piece of metal imbedded in the

sclera has also been used for magnetic tracking.

Contact Lens-based Methods

Contact lenses are probably the most acceptable form of attachments to the eye, and there

has been contact lens designs with planar mirror surfaces ground onto the lens or attached

on a stalk protruding from the lens. The principle non-optical contact lens method is based

on the search coil technique [82], which is shown in Figure 2. The human subject wears

contact lenses with embedded wire coils, as shown in Figure 1(a), and is surrounded by large

electromagnetic coils, as shown in Figure 1(b). The induced voltage in the embedded coils

varies with the eye angle relative to the magnetic field and is independent of head position.

Corneo-retina Electrical Potential

Another phenomenon that was used is the potential difference between the cornea and the

retina, due to electrical activities in the retina. When the eye moves, current is induced

in electrodes placed in a plane perpendicular to the line of sight (typically on the subject’s

face) can be used to measure eye movement.
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(a)

(b)

Figure 5.2: Anatomy of the eye. (a) External view. The boundary between the sclera and
the iris is called the limbus. (b) Cross section view. (Images from [81])

5.1.2 Non-contact Optical Tracking

In this section we examine the class of techniques that are most widely used in commercially

available eye trackers today. These eye trackers typically rely on the precise measurement of

certain specific features of the eye. We briefly review the physical characteristics of the eye

that we will refer to frequently in subsequent discussions. Figure 2 shows the anatomy of

the eye. In Figure 2(a) an external view of an eye is shown. The white portion that forms

the majority of the external surface is called the sclera, and the transparent bulging portion

is called the cornea. Behind the cornea is the iris, which is of a darker color than the sclera,

and in the center of the iris is an opening known as the pupil, which allows light to enter the

eye. The boundary between the sclera and the iris is called the limbus. Figure 2(b) shows

a cross sectional view of the eye, and we can see that after light enters the pupil it passes

through the lens and the vitreous humor before reaching the retina, which senses the light.

The eye is embedded in a socket and is able to rotate with three degrees of freedom. For

most applications it is acceptable to assume that the eye rotates about a fixed center [75].
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Figure 5.3: Example of eye tracking using the limbus. Image is taken from [102].

The Limbus

The limbus, sometimes called the iris-scleral boundary, is usually the most salient edge in

an image of an eye, and is relatively easy to localize. As the limbus can be assumed to

approximate a circle, one way to estimate the rotation of the eye using the limbus is to use

the shape of the limbus as it appears in an image [102, 55]. If it is observe along the line

of sight, the limbus will appear to be a circle. As the observation point moves away from

the line of sight, the image of the limbus can be approximated by fitting an ellipsoid and

the rotation can be recovered from the parameters of the fitted ellipsoid. Figure 3 shows an

ellipsoid successfully fitted to the edge pixels corresponding to the limbus. One problem with

limbus tracking is that the limbus can be occluded by the eyelids and usually only portions

of it will be visible. This makes the technique sensitive to facial expression variations. Also,

as the eye looks away from the camera the cornea itself will start to occlude the limbus.

The Pupil

While the pupil is harder to see under normal lighting conditions than the limbus, especially

when the iris is dark-colored, it turns out that it is possible to exploit the “red eye” effect to

localize the pupil. This effect is due to the retroreflectivity of the retina: it reflects light most

strongly back in the direction where the light came from. As a result if the illumination is

near to the axis of measurement, the pupil will appear to be bright, and appears darker than
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Figure 5.4: The Eyelink II eye head-mounted eye tracker uses corneal reflections to enhance
its accuracy.

the iris when the light is not coming directly along the optical axis of the camera. Rotation

information of the eye can be estimated in a manner similar to that used in limbus tracking.

In addition, using the pupil has the advantage that the pupil has a smaller radius than the

limbus and is less likely to be occluded by the eye lids. A method utilizing the bright pupil

phenomenon was used to create a system that is able to detect multiple faces in real time

using active illumination [66].

Corneal Reflection and Corneal-pupil Tracking

The “glint” or the highlight in an eye can also be used for tracking purposes. By observing

the position of the reflection of a light source in the front surface of the cornea, it is also

possible to estimate the orientation of the eye [38]. More commonly, the corneal reflection

is used in conjunction with the location of the pupil to estimate the rotation of the eye [48,

46, 64, 36, 96, 37, 74]. Figure 4 shows a commercially available eye tracker that uses corneal

reflections to improve its accuracy. One issue with the use of the corneal reflection is that

as an eye rotates, it is possible that the corneal reflection falls on the sclera, that has a

surface that is rougher than that of the cornea, resulting in a specular high light that is

much larger than the corneal reflection. In addition, as the curvatures of the cornea and

sclera are different, the geometric calculations would need to take into account whether a

reflection is on the cornea or the sclera.
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(a) (b)

Figure 5.5: Dual Purkinje Image Tracking. (a) The SRI Dual Purkinje Image eye tracker.
(b) Cross section view showing how the four Purkinje images are formed.

Purkinje Images

While light entering the eye is reflected to give the corneal reflection, it is also reflected by

a series of surfaces as the light travels deeper into the eye. Light is not only reflected from

the front surface of the cornea - its rear surface also reflects light to give a second image of

the light source. Similar reflections also occur at the front and rear surfaces of the lens, as

shown in Figure 5(b). These reflections form what is referred to as the four Purkinje images,

and can be used for high-precision tracking [31, 32].

Of the four images, the first (the corneal reflection) and the fourth are the brightest.

These two images are useful for deducing the rotation of the eye as they move together

when the eye translates, and different when the eye rotates. Currently the most accurate

eye tracker that is commercially available is based on Purkinje image tracking. Figure 5(a)

shows the the eye tracker in operation. Although the manufacturers claim that the machine

is capable of up to 1 minute of arc accuracy, in practice the accuracy is around 0.5 degree [63].

One of the problems with using the fourth Purkinje image is that when the pupil is small,

the light ray used to produce the reflections may not be able to reach the lens of the eye.

Also, the machine requires the head to be stationary and users have to use a bite board

while using the eye tracker.
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Figure 5.6: The ASL Model 504 eye tracker.

5.1.3 Vision-based Tracking

The third category of eye trackers we study typically aims to allow the user more freedom of

movement, and a typical setup is shown in Figure 6: a desk-mounted camera tracks the eye

of the user from a distance, and does not require the head to be stationary. The particular

model shown, the ASL 504, uses a ring of infrared LEDs to produce a bright pupil image

and uses it for tracking. The major advantage is that the user is not required to wear

any headmounted equipment, and the tracker allows for one cubic foot’s head movement.

This makes the tracker suitable for use with a wider range of subjects, including children

for example. We believe that ultimately eye trackers will be of this form, and computer

vision techniques will be developed that enables accurate and robust eye tracking without

depending on delicate optical phenomena such as the Purkinje images.

Simple Models

A simple example of a model-based approach to eye tracking can be seen in Daugman’s

work [33]. In this application, the machine used for identifying persons needs to search the

input image to localize the iris. The algorithm essentially performs a coarse-to-fine searches

for a circular contour in the image corresponding to the limbus, and then search for the

pupil. In this case the model is simply a circle and a specification of the grayscale variation

around the contour. For example, while searching for the pupil (without using the bright
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pupil method), the algorithm normalizes the grayscale values around the contour so as to

bring out the pupil contour.

Deformable Templates

A more elaborate model for the eye was proposed in Yuille’s deformable template work [112].

The proposed model explicitly models

1. The limbus as a circle,

2. the eye lids as two parabolic sections,

3. the centroids of the two visible portions of the sclera beside the iris, and

4. the two region of the sclera between the eye lids and below and above the iris.

The limbus circle is attracted to contours that are dark on the interior and light on the

outside, and the four scleral centroids are attracted to bright portions of the image. Gradient

descent is then used to fit the model to images of eyes. Although gaze estimation was not

a goal of the paper, one could use the parameters thus derived to estimate the direction of

the eye gaze.

This template was augmented in [95] to account for eye blinks. This eye model is able to

transition between the open and close state according to the given input image to produce

the best fit.

Other Facial Features

Trackers have also been built that look for other facial features, like the corners of the mouth,

corners of the eyes, and corners of the eye brows. In [62], the tracking process runs in two

stages, where the facial features are first matched with the input video stream, and using

the head pose information derived in the first stage, a second stage then estimates the eye

gaze using an eye model to track the limbus. A simpler model was also proposed in [39],
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where only the facial features were used to compute a facial normal, which is then used as

a substitute for the gaze direction.

Neural Network-based Methods

A representative work on eye gaze estimation using a neural network-based technique is

Baluja and Pomerleau’s neural network-based method [8]. In this eye tracker, cropped

images of the eyes are used as inputs to a neural network. Training data is collected by

requiring the user to look at a given point on a computer monitor and taking a picture of

the eye looking at the given point. Thus each labelled training sample consists of the image

of the eye and also an (x, y) label of the location on the screen that the user is looking at.

In their experiments, 2000 training samples were used to train a multilayer neural network,

and the authors reported an accuracy of about 1.5 degrees. Their tracker runs at 15Hz, and

allows some head movement. A similar method is documented in [108], which also achieved

an accuracy of 1.5 degrees, using 3000 training samples.

5.2 Eye Gaze Estimation with Faceted Appearance

Models

Eye gaze estimation can also be treated as a pose estimation problem, which we can solve

using an appearance-based approach using Faceted Appearance Models [94]. We build an

appearance model with a set of images of one of the user’s eyes, and label each image with

a ground-truth 2D coordinate of points on a planar display surface. The physical setup for

data collection is described in the following section. We also need to specify the topology

for the Faceted Appearance Model. In this case, we can use a Delaunay triangulation of the

set of 2D coordinate labels to represent the topology: if there is an edge in the Delaunay

triangulation between two of the points, then the two corresponding eye images can be

considered neighbours on the manifold. For each new image of the eye for which its point-

72



of-regard is to be determined, the nearest point on the Faceted Appearance Model is first

estimated. The set of weights used to interpolate the facet images are then used to interpolate

the corresponding 2D coordinate labels to obtain the estimated gaze point.

5.3 Experiments

To test the performance of our algorithm [94] in eye gaze estimation, we constructed an

image capture system to collect a data set consisting of images of an eye that are labeled

with the coordinates of a point that the eye is looking at. The system consists of a computer

with a monitor, a monochrome camera, and a framegrabber. The image capture process is

as follows: the computer displays a crosshair marker on its screen, and the user is asked to

align (by moving a mouse) a cursor (also displayed as a crosshair) with the marker shown,

and click on the marker. The next marker is then shown in a different location, and the

user repeats the task. Since the user’s eye will be looking at the position of the marker on

screen when he/she is trying to align the marker and the cursor, images of the user’s eye

are captured when the cursor and marker are almost aligned. Note that the image capture

takes place before the user clicks on the marker, since it is likely that upon completing the

task the eye may start looking away in anticipation of the next marker. To further ensure

that the user is indeed looking at the marker positions displayed, we pick the positions of

the markers randomly while ensuring that at some point the extreme corner coordinates are

chosen. If the marker positions can be reliably predicted by the user, it may be possible for

the user to align the markers without looking at the markers directly, which would result in

erroneous labels for the eye images.

We also mounted an infrared illuminator next to the camera which has a sensor that is

sensitive to infrared as well as visible light. This not only ensures that the eye is well lit, it

also provides a certain amount of control over the illumination. Typical images can be seen

in Figure 5.7(a). It can be seen that the facial region around the eye appears very bright.
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One should realize, however, that since the illumination was with infrared light, the user

does not see a bright light, which would be very distracting. It should also be noted that

the pupil does not exhibit the “red eye” effect since the infrared light was not close to the

optical axis of the camera. In fact, the eye turns out to be much darker than the brightly

illuminated facial region. We use this effect to find the eye in the image by thresholding the

intensity image and identifying the connected dark region that is closest to a predetermined

size. For the images shown, the intensity threshold is set at 200 (out of 255), and the region

size parameter is chosen to be 4000 pixels. The eye image is then cropped from a rectangular

region centered at the spatial centroid of this dark region. An example of the cropped image

is shown in Figure 5.7(b). It can be seen that the cropping is different for the three users

shown, in that the cropping algorithm also included the eye brows for the second user, and

did not include the eye completely in the image. It turns out that this is still adequate for

gaze estimation.

5.3.1 Measuring Accuracy

We used a set of 252 images each from three users, and evaluated our system by “Leaving

one out”: using each one of the eye images as the test image, and the rest of the set to form

the appearance manifold. The mean error is computed as

Mean error =
1

n

n∑
i=1

|Pe − Pt|

where

Pe = estimated position

Pt = true position

n = number of test samples

In this experiment, the eye is 18-24 inches away from the monitor, which displays the markers

in an approximately planar, rectangular region of about 12 inches wide and 9 inches tall.
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(a) (b)

Figure 5.7: Samples of labeled data set collected from three subjects (from top) X, Y, and
Z, who are at distances 18, 20, and 24 inches away from the display respectively. (a) Raw
captured image. Cropped eye region is shown as an overlaid rectangle. (b) Cropped and
scaled image of eye used as appearance sample.
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We also assume that the line of sight is perpendicular to the planar region when the eye is

looking at its center. We can estimate the mean angular error as follows:

Mean angular error = tan−1 Mean error

Distance from Screen

Figure 5.9(a) shows the results for Subject X with the entire set of 252 images. The crosses

show the real marker positions, and the round dots show the estimated positions, with a

line segment joining corresponding crosses and dots. From the scatter plot, we can see

that there were some large errors around the periphery. This is to be expected, as the

positions were estimated by interpolating marker positions from the appearance manifold,

and the test samples on the periphery are essentially approximated by extrapolating points

that are near the periphery, which yields lower accuracy. We can identify the peripheral

test samples as those whose true marker positions form the convex hull of the complete set

of marker positions. We also discard the convex hull vertices of the set of points left after

removing the first convex hull. For the data set shown, it amounts to removing the set

of points on the rectangular border. The average angular errors for the three subjects are

tabulated in Figure 5.8. As can be seen, the angular error averaged over all subjects is 0.3838

degrees. The error magnitude distribution for subject X is plotted in Figure 5.9(b). As can

be seen, the maximum error is 0.45 inch. From this observation, it is clear that using this

gaze estimation algorithm, one can reasonably expect to use eye gaze to guide a cursor to

graphical user interface widgets on the monitor that is about a square inch in size.

In general, one would expect the accuracy of the tracking method to improve with more

training samples. To validate this, Figure 5.9(c) shows how the angular error decreases as

the number of calibrated samples is increased.

Figure 5.10 shows that the accuracy achieved is comparable to those reported by commer-

cially available optical trackers, and is superior to the existing appearance-based methods

using neural networks. The same table also shows the number of calibration samples required
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Subject Complete Non-peripheral
X 0.47853 0.44551
Y 0.43685 0.30534
Z 0.47112 0.4004

Mean 0.4622 0.3838

Figure 5.8: Average angular errors for the three subjects, measured in degrees.

for each of the methods. While our method still requires considerably more samples than

optical trackers like the Eyelink II, it requires dramatically fewer samples than the neural

network-based methods while still achieving superior accuracy.

5.4 Discussion

Given that there was no explicit feature extraction and geometric modeling, the 0.38 degree

accuracy achieved by the algorithm is rather surprising. The Dual Purkinje Image eye

tracker, widely considered the most accurate eye tracker on the market, claims to have

an impressive “less than 1 minute of arc resolution” accuracy (http://www.fourward.com).

However this is measured with an artificial eye. Vision researchers who have used the Dual

Purkinje Image eye tracker reported that its accuracy with human subjects is on the order

of 0.5 degree. To explain this apparent discrepancy, we can consider the geometry and

resolution of the human eye. Even though visual acuity in the fovea is on the order of 30

arc seconds, the fovea actually covers about 1 degree of the human visual field. When a

human eye fixates on a point, the point is projected onto some point within the fovea. It

seems unlikely that the point will be projected consistently onto precisely the same spot on

the fovea, to within 30 arc seconds. If we assume that a point being fixated upon only needs

to fall on the fovea, the eye would only need to come within 0.5 degrees of the ‘ideal’ gaze

angle, which would be consistent with the error margins reported with human subjects on

optical eye trackers.

As such, even though it may be possible to measure the orientation of the human eyeball
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(a)

(b)

(c)

Figure 5.9: Gaze estimation results analysis for Subject X. (a) Crosses are the ground truth
marker locations, and the round dots are the estimated location that the eye is fixated upon.
(b) Error magnitude distribution. (c) Average angular error decreases as sampling density
increases.
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Accuracy Calibration
(degrees) Samples

Xu-Machin-Sheppard [108] 1.5 3000
Baluja-Pomerleau [8] 1.5 2000

ASL Eyelink II 0.5 9
Appearance Manifold 0.38 252

Figure 5.10: Comparing eye trackers. (Also see main text for a remark on the Dual Purkinje
Image eye tracker.)

to a high degree of precision, there is still an error margin between the eyeball orientation

and the direction of the true point-of-regard. We thus believe that eye tracker performance

with human subjects will be on the order of 0.5 degrees, and the performance of our gaze

estimation algorithm is probably near optimal. We attribute the accuracy achieved to a

good fit between the problem domain and the appearance manifold model. Recall that one

of the fundamental assumptions of the manifold model is that the appearance of the object

being modeled should vary continuously with the given parameter. The experimental results

we collected indicates that this is indeed the case for the appearance of an eye as it varies

its gaze direction.

5.5 Conclusion and Future Work

We have presented a new method for estimating eye gaze direction based on appearance-

manifolds, and the degree of accuracy achieved is very encouraging. We have also suggested

an enhancement to the appearance manifold method by proposing a nearest manifold point

search technique that exploits the topological information inherently present in the manifold

model. The degree of accuracy achieved in our experiments is comparable to existing eye

trackers, indicating that appearance-based parameter estimation is at least a viable solution

to the eye gaze estimation problem.

While the results are very encouraging, there is more work to be done with respect to
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the eye gaze estimation problem. We would like to model variations in head orientation, and

we believe that the current technique should in theory be able to handle head orientation

variation. However it would be more difficult to collect a good set of training data that cap-

tures variations in head orientation, since it would require the user to repeat the calibration

procedure using various different orientation of his/her head. Not only is it strenuous for

the user, it is also difficult to measure the true head pose reliably. One possibility is to use

a set of cameras mounted on a grid, and capture the appearance of the eye simultaneously

from multiple viewpoints.

We are also investigating the integration of the eye tracker into head-mounted displays.

Since the appearance-based method does not rely on any specific optical phenomenon such

as the corneal reflection or the bright pupil, it allows for more freedom in the placement of

the eye tracking camera, and may result in designs that are more compact.
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Chapter 6

Video-rate Environment Capture with
Mirror Pyramid-based Multiview
Panoramic Cameras

Panoramic images and video are useful in many applications such as special effects, immer-

sive virtual environments, and video games. In recent years, the subject has been actively

investigated by a number of researchers [11]. Among the numerous devices proposed for

capturing panoramas, mirror pyramid-based camera systems are a promising approach for

video rate capture, as they offer single-viewpoint imaging, and use only flat mirrors that are

easier to produce and introduce less optical aberration than curved mirrors. To date, the

designs proposed typically capture panoramas from a single viewpoint. Capturing panora-

mas from multiple viewpoints with these designs would require either sequentially relocating

a single camera system at different viewpoints or employing multiple systems located at all

viewpoints which could operate in parallel. Obviously the sequential solution captures in-

consistent panoramas when the scene is not static. On the other hand, the parallel solution

results in bulky designs as there would need to be one mirror pyramid per viewpoint, but

with adjacent viewpoints will need to be separated by a sufficiently large distance. In this

paper, we show that it is possible to create multiple viewpoints with only a single mirror

pyramid while retaining the ability to capture panoramas at video rates.
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6.1 Previous Work

Techniques for constructing panoramic cameras can be classified into two categories: diop-

tric methods, where only refractive elements (such as lenses) are employed, and catadiop-

tric methods, where reflective components (such as mirrors) are used in combination with

refractive elements. Dioptric systems include camera clusters [7, 88], fish eye lens-based sys-

tems [65, 107, 115], and rotating cameras [20, 56, 58, 57, 2, 4, 3, 77]. Catadioptric systems

include sensors that use curved mirrors and a single camera [21, 22, 42, 43, 50, 70, 72, 109,

114, 78], and sensors that employ planar mirrors and multiple cameras [69, 54, 47, 93, 5].

Dioptric camera clusters, in which multiple cameras point in different directions to achieve

a large FOV, are capable of achieving high resolution panoramic video rate capture. How-

ever, cameras in these clusters typically do not share a unique viewpoint due to physical

constraints, which makes it impossible to mosaic individual images to form a true panoramic

view. Although apparent continuity across images may be achieved by ad hoc image blend-

ing, panoramas produced as such are not suitable for some machine vision tasks that need

images to be captured through a single viewpoint. Systems using a fisheye lens are able to

deliver large FOV images at video rate, but have limited sensor resolution as the entire FOV

is covered by a single sensor. Fisheye lenses also introduce irreversible distortion for close-

by objects and may have different viewpoints for different portions of the FOV. Rotating

cameras, in which a conventional camera rotates about its viewpoint to acquire panoramic

images, deliver high-resolution wide FOV but are not capable of video rate panoramic cap-

ture.

Catadioptric systems that use a curved mirror to map a panoramic view onto a single

sensor are able to achieve a single viewpoint at video rate, but have the same limitation on

sensor resolution as fisheye lens-based systems. Furthermore, the resolution varies signifi-

cantly with the viewing direction across the FOV. Similar to the dioptric case, this resolution

limitation can be overcome at the expense of video rate capture capability by panning the
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(a) (b) (c) (d)

Figure 6.1: The evolution of mirror pyramid cameras. (a) Original design by Nalwa. (b)
Stereo design by Kawanishi, vertically stacking two of the cameras from (a). (c) Double
vertical FOV design by Hua and Ahuja. (d) Our generalized multiview design, shown with
three viewpoints. In general, the design is able to accomodate an arbitrary number of
viewpoints placed in arbitrary configurations.

camera system [27, 71, 86] .

A mirror pyramid camera system, first described in [69], consists of a number of flat mirror

surfaces arranged in the form of a pyramid together with a set of conventional cameras each

associated with a face on the mirror pyramid. These cameras are strategically positioned

such that the mirror images of their viewpoints are located at a single point within the

mirror pyramid. Effectively this creates a virtual camera with a wide FOV that is capable

of capturing panoramas at video rates. The first mirror pyramid camera design locates the

viewpoints for the conventional cameras at a point on the main axis of the pyramid, between

the apex and the base plane. A recently-proposed camera system [47] uses a double mirror

pyramid (two mirror pyramids sharing a common base plane), and locates the viewpoints

at the intersection point of the main axis and the base plane. This doubles the vertical

FOV. An attempt at creating a stereoscopic (two-view) mirror pyramid camera [54] uses

two vertically-stacked mirror pyramids and locates two viewpoints, one in each pyramid,

effectively duplicating the arrangement in the first design [69]. Although this creates two

panoramic viewpoints, the two views are vertically displaced, i.e., displaced in a direction

orthogonal to the panoramic strip. In many applications, it is more useful to have the

camera displacement aligned with the direction of the panoramic strip, i.e., conforming to
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the commonly encountered mode of stereo vision. This type of configuration would be

necessary, for example, when the stereo video stream captured is meant to be viewed by a

human user.

Figure 6.1 illustrates the previous designs in the evolution of mirror pyramid cameras,

and compares them with our multiview design. As far as we know, there do not appear to be

any existing mirror pyramid camera designs that allow the capture of horizontal panoramas

from multiple horizontally displaced viewpoints. One possible solution would be to have

two single-viewpoint mirror pyramid cameras located side-by-side. Alternatively, a single

mirror pyramid camera could be relocated to sequentially capture the panoramas at each

viewpoint if the scene is stationary. Obviously, the second solution will not be capable of

video rate capture, and the first would result in bulkier designs since there would be two

mirror pyramids next to each other. More importantly, each mirror pyramid would occlude

a part of the other mirror pyramid’s FOV.

6.2 Multiview Mirror Pyramid Cameras

In this paper, we propose a mirror pyramid camera design that allows two or more viewpoints

to be located horizontally within one mirror pyramid. In addition, the viewpoints can be

placed in arbitrary spatial configurations within the mirror pyramid so that, for example,

three viewpoints lie in a plane inclined at an arbitrary angle to the base plane, or four

viewpoints lie at the vertices of an irregular tetrahedron with arbitrary orientation, or two

viewpoints displaced horizontally. Essentially, each viewpoint within the mirror pyramid

dictates the positions of a set of conventional cameras around the pyramid. A designer can

thus start with the desired spatial configuration of the viewpoints and work out the required

configuration of the set of conventional cameras. Video rate imaging can then be achieved

simultaneously from all viewpoints. This design was first described in [93].

In the following sections, we will describe the proposed class of mirror pyramid cameras.
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Figure 6.2: The geometry of a mirror pyramid.

We start with a description of mirror pyramids. We then examine the relation between a

desired viewpoint inside a mirror pyramid and the positions of the corresponding set of con-

ventional cameras around the pyramid. Subsequent sections show how, for each conventional

camera, the focal length and orientation can be chosen to maximize the spatial utilization

of each camera’s optical sensor. We then discuss the tradeoffs and limitations and show the

results obtained from an experimental prototype that uses four conventional cameras to form

two viewpoints.

6.2.1 Properties of Mirror Pyramids

We now describe the class of symmetric mirror pyramids considered in this paper, and used

either alone or as a part of double mirror pyramids. Any such mirror pyramid can be fully

characterized by the following parameters: radius, tilt angle, height, and the number of faces.

Radius refers to the perpendicular distance from the main axis to the line of intersection

of each planar mirror face with the base of the pyramid. Tilt angle refers to the angle

between each mirror face plane and the base plane. If the pyramid is not truncated, all the

mirror faces will intersect at the apex of the pyramid. If the pyramid is truncated, then the

distance between the truncation plane and the base plane is called its height. Finally, the

number of faces refers to the number of mirror faces in a single pyramid (twice as many in

a corresponding double pyramid). Figure 6.2.1 illustrates the geometry involved.
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(a) (b) (c)

Figure 6.3: Variation in the physical camera position with viewpoint position. (a) Viewpoint
is centered in a four-sided pyramid. There are eight mirror faces, and thus four cameras
each for the upper and lower pyramids. (b) When the viewpoint shifts from the center,
the geometric configuration of the physical cameras changes accordingly. The figure shows
camera positions for viewpoints positioned at points A, B, and C. (c) Same as (b), but
with a mirror pyramid with a large number of faces, to show how the shape changes as the
viewpoint translates from the center towards the edge of the mirror pyramid.

6.2.2 Individual Viewpoint Placement

As mentioned earlier, previous designs of mirror pyramid cameras locate the viewpoint on

the axis of symmetry of the pyramid. This viewpoint is placed at the base of the pyramid in

a double mirror pyramid, and at a distance away from the base in a single mirror pyramid.

In this section we will show how a viewpoint can be placed at an arbitrary location within

the pyramid.

This can be easily accomplished by starting with a viewpoint and projecting its image

into the physical world by finding the reflections of the viewpoint in the planes containing

each respective mirror face. Each such projection is the location of the viewpoint of the

physical camera associated with the corresponding pyramid face. An example is shown in
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Figure 6.3(a) , in which a four-sided double mirror pyramid is used to create a viewpoint

at its center. In the figure, dotted lines join the viewpoint and its corresponding physical

camera positions for each mirror face.

When the viewpoint is on the main axis of the pyramid, symmetry causes the positions

of the cameras for each of the upper and lower pyramids to form the vertices of a regular

polygon. As the viewpoint is shifted away from the center, the polygonal shape changes.

Figure 6.3(b) illustrates the effect with the same mirror pyramid as in Figure 6.3(a) , and

Figure 6.3(c) illustrates the effect of a shift in the viewpoint for a pyramid with a very large

number of faces, and showing how the shape deforms as the viewpoint approaches the outer

edge of the pyramid. It can be seen from this last diagram that the initial, almost circular

(approaching a circle for an arbitrarily large number of faces) shape smoothly deform into

an irregular non-planar shape as the viewpoint shifts away from the center. The practical

implication of this observation for camera designers is that if it is necessary for a mirror

pyramid camera to change the position of a viewpoint on-the-fly, the camera mounting

mechanism would have to take into account this irregular deformation.

6.2.3 Physical Camera FOV Determination

After placing the physical cameras at the locations dictated by the viewpoint in a given

mirror pyramid, we need to determine the orientation and focal length of each physical

camera, which together with the size of the camera CCD sensor determine the FOV of each

camera. The minimum requirement here is for each camera to be able to capture a complete

image of its corresponding mirror face. These mirror face images from the cameras can then

be mosaiced to form a panoramic image. This requirement however does not ensure optimal

use of the available sensors area. The image of a mirror face on a sensor is in general smaller

than the sensor, and thus not fully utilize the sensor. In this section, we present a method

for finding an optimal orientation that maximizes sensor usage, and the maximum allowed

focal length for each camera. The procedure first determinines the camera orientation and
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Figure 6.4: The projection geometry of mirror faces onto optical sensors.

then uses the orientation found to determine the maximum allowed focal length. Before we

proceed, it is important to note that in this section we are concerned only with the shape

and size of the mirrors, and their projection onto camera sensors under perspective viewing

transformation. Therefore when we refer to a ‘mirror face’ and its image on the camera

sensor, we are refering only to the shapes and sizes of the mirrors, and not the photometric

variations captured on the camera sensors.

Focal Length

Figure 6.4 illustrates the projection geometry of a mirror face onto the sensor plane of a

physical camera. The CCD sensor is shown to be a thick black line that is perpendicular

to the camera optical axis and parallel to the image plane which coincides with the sensor

plane. It can be seen that the sensor captures only a portion of the infinite image plane.

In commercially available cameras, the sensor typically covers a rectangular region that is

approximately centered at the point where the optical axis intersects the image plane. The

focal length, together with the size of the sensor, then determines the effective field of view

of the camera. Given a particular orientation and position of a camera and the size of its

sensor, we can then find the largest focal length such that the mirror face image is contained

in the sensors capture area. Assuming that the sensor is rectangular and its sides are aligned

88



Figure 6.5: Variations in the mirror face image as the camera orientation changes.

with the axes of the frame of reference, the procedure to determine the focal length is as

follows:

1. Given a camera orientation, find the image of the corresponding mirror face on the

image plane by projecting the four vertices of the mirror face.

2. Find the smallest axis-aligned rectangle on the image plane centered at the optical axis

that contains the mirror face image.

3. Find the smallest axis-aligned rectangle with the same aspect ratio as the sensor that

contains the rectangle found in the previous step.

4. Find the focal length that makes the rectangle of Step 3 coincide with the sensor.

Figure 6.5 shows an example of the range of mirror face images projected on the sensor

plane as a camera’s orientation varies. The figure also shows two of the bounding rectangles

corresponding to the maximum allowed focal length for the smallest and largest mirror face

image. It can be seen that changes in orientation affect the shape, size, and location of the

face image within the sensor capture area.
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Orientation

It should be noted that the solution for the focal length is uniquely determined for each given

orientation and position of the camera, and the size of the sensor. Thus for each orientation

and position, we can effectively estimate the maximum possible usage of the sensor by finding

the image of the mirror face on the sensor using the maximum possible focal length. Given

that each mirror face is a quadrilateral, we can find the projection of the four vertices of each

mirror face and compute its area. Now we can search for a set of orientation parameters

that makes maximum utilization of the sensor in each camera. We define utilization as

Utilization = F
S
.

where

F = area of mirror face image on sensor

S = area of sensor

We then find the orientation for each camera that maximizes its utilization. The results of

this optimization is illustrated in Figure 6.5. In Figure 6.6(a) , a mirror pyramid is shown

with a viewpoint that is shifted from the center. Figure 6.6(b) shows the results of optimizing

the FOV for each camera: each rectangle represents the effective sensor capture area, and

contains a quadrilateral which is the image of the corresponding mirror face.

The Uniform-Resolution Constraint

While the sensor utilization in each camera can be maximized by varying the focal length, it

is not always desired. One of the drawbacks of optimizing the focal length is that the sensor

resolution per unit solid angle now varies among cameras. When the uniform-resolution prop-

erty is desired, we can simply find the minimum among all the optimal focal lengths found,

and use the same focal length for all cameras. The result of imposing this uniform-resolution

constraint is shown in Figure 6.6(c) . It can be seen that some of the sensors are not fully uti-

lized. However, now the resolution is constant across the entire panoramic image captured.

Alternatively, we can choose the maximum focal length among all the optical focal lengths
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(a)

(b)

(c)

Figure 6.6: Optimizing the FOV of each camera. (a) Mirror pyramid and viewpoint. (b)
FOV optimized for each camera. (c) Enforcing the uniform-resolution constraint by using a
constant focal length for all cameras.

found. This results in not only a uniform resolution, but it also imposes a uniform vertical

FOV across the panoramic image captured, as shown in Figure reffig:uniform-resolution.

6.2.4 Multiview Setup Considerations

Having described the method for placing individual viewpoints at arbitrary locations within

a mirror pyramid, we now discuss the issues involved in the placement of multiple viewpoints

within the same pyramid. Each additional viewpoint adds a new set of physical cameras

configured by the method discussed in the previous section. A fact of interest to the camera

designer is that the locations of the physical cameras corresponding to different viewpoints

and a given mirror face are simply the mirror images of the locations of the viewpoints in
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(a) (b)

Figure 6.7: The effect of camera focal length choices on vertical FOV, which is shown
projected onto a cylinder at a fixed radius from the mirror pyramid’s main axis. (a) Variable
focal lengths results in a variable vertical FOV. (b) Uniform focal lengths results in uniform
resolution and vertical FOV.
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Figure 6.8: Configuration of groups of cameras corresponding to each mirror face remains
rigid. The three images shows the effect of translating a group of viewpoints on the positions
of the set of physical cameras.

the face. This means that the relative distances and angles among the physical cameras

corresponding to a given mirror face are invariant across the different mirror faces. Further,

if a set of viewpoints within the pyramid undergos a rigid transformation the corresponding

camera configuration also undergoes a rigid transformation which is given by reflections of

the viewpoints into the corresponding faces. This is illustrated in Figure 6.8. It should be

noted, however, that this invariance property applies only to the camera positions and not

the FOV-maximizing orientations.

The number of viewpoints and their spatial configuration will also have another constraint

arising from the need to place the physical cameras around the mirror pyramid, which of

course will depend on the physical sizes, shapes, orientations and locations of the cameras,

and the size and shape of the mirror pyramid.
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(a)

(b)

Figure 6.9: (a) A design showing a 6-face pyramid and only two pairs of cameras (AA′, BB′).
Each pair is associated with one face and the two viewpoints shown as crosses(+). (b) The
experimental setup implementing the design in (a).

6.3 Implementation

We implemented a stereo (two-view) mirror pyramid camera system that utilizes two con-

ventional monochrome cameras for each viewpoint, as shown in Figure 6.9. We used an

experimental setup that does not allow all the degrees of freedom required for optimized

performance, as discussed in previous sections. We had limitations on the achievable camera

orientations, and also employed lenses with equal focal lengths on all the cameras. The most

significant implication of these limitations is that the usage of the individual sensors may

not be optimized, as described in the previous sections. However, the setup proves that it is
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Figure 6.10: The raw images captured by the four cameras, after correcting for radial dis-
tortion.

possible to create a mirror pyramid camera with more than a single viewpoint, each located

at an arbitrary position within the mirror pyramid. In contrast, all previous mirror pyramid

camera designs have only one viewpoint which is limited to the axis of symmetry. As a

result, the techniques described in this paper enables the design of a new class of multiview

mirror pyramid cameras.

To see that we have achieved a stereo configuration in Figure 6.9, note that the images

of the four cameras in the figure form a pair of cameras pointing outwards from within the

mirror pyramid. In our experiments, the intrinsic parameters and the radial distortion are

estimated and compensated for using the camera calibration software described in [113].

Figure 6.3 shows the images captured by each individual camera (after radial distortion

compensation). The mosaiced images are shown in Figure 6.11. It may appear from the

experimental results that the setup shown makes suboptimal utilization of the sensors and

it might even be possible to obtain the same results using a pair of conventional cameras.

However, one should remember that the experimental setup utilizes only two faces of the

mirror pyramid and is not fully optimized in the manner described in section 6.2.3. If a

full set of cameras were used, even this suboptimal setup would still be able to capture

360-degree panoramas, which is beyond the capabilites of a conventional camera.
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Figure 6.11: The stereo pair of panoramic views captured with the experimental setup.

6.4 Discussion and Future Work

By observing that it is possible to place viewpoints inside a mirror pyramid in arbitrary

positions, we have shown how a new class of multiview mirror pyramid cameras can be

designed. We have studied the impact of viewpoint shifting on the placement of the con-

ventional cameras around the pyramid, and experimentally demonstrated the feasibility of a

two-view mirror pyramid camera. In our ongoing efforts, we are investigating the use of these

multiview mirror pyramid cameras in areas like robot navigation and immersive telepresence.

In addition, an optical artifact noted in [47] also needs to be addressed.
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