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Although steady progress has been made on developing vision-based gesture
recognition systems, state-of-the-art approaches are still limited to discrimi-
nate hand configurations with high amounts of finger occlusions, a common
scenario in most fingerspelling alphabets. In this article, we propose a novel
method for recognition of isolated fingerspelling gestures based on depth edge
features. Our approach is based on a simple and inexpensive modification
of the capture setup: a multi-flash camera is used with flashes strategically
positioned to cast shadows along depth discontinuities in the scene, allowing
efficient and accurate extraction of depth edges. We then use a shift and scale
invariant shape descriptor for fingerspelling recognition, demonstrating great
improvement over methods that rely on features acquired by traditional edge
detection and segmentation algorithms.

1 Introduction

Sign language is the primary communication mode used by most deaf people.
It consists of two major components: 1) word level sign vocabulary, where ges-
tures are used to communicate the most common words and 2) fingerspelling,
where the fingers on a single hand are used to spell out more obscure words
and proper nouns, letter by letter. Facial expressions can also be employed to
distinguish statements, questions and directives.

Over the past decade, great effort has been made to develop systems ca-
pable of translating sign language into speech or text, aiming to facilitate
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Fig. 1. (a) Letter ’R’ in ASL alphabet. (b) Canny edges. Note that important internal
edges are missing, while edges due to wrinkles and nails confound scene structure.
(c) Depth edges obtained with our multi-flash technique.

the interaction between deaf and hearing people. Extensive research has been
done in both word level and fingerspelling components.

Previous approaches to word level sign recognition rely heavily on statis-
tical models such as Hidden Markov Models (HMMs) [17, 18, 4]. Excellent
recognition rates were obtained for small word lexicons, but scalability is still
an issue for glove-free sign recognition. For fingerspelling recognition, most
successful approaches are based on instrumented gloves [8, 14], which provide
information about finger positions.

In general, non-intrusive vision-based methods, while useful for recogniz-
ing a small subset of convenient hand configurations [7, 1], are limited to
discriminate configurations with high amounts of finger occlusions - a com-
mon scenario in most fingerspelling alphabets. In such cases, traditional edge
detectors or segmentation algorithms fail to detect important internal edges
along the hand shape (due to the low intensity variation in skin-color), while
keeping edges due to nails and wrinkles, which may confound scene structure
and the recognition process (see Figure 1b). Also, some signs might look very
similar to each other, with small differences on finger positions, thus posing a
problem for appearance-based approaches [7].

We address this problem by using a technique we have recently proposed
for conveying shape in non-photorealistic rendering [13]. Our approach is
based on a simple and inexpensive modification of the capture setup: a multi-
flash camera is used with flashes strategically positioned to cast shadows along
depth discontinuities in the scene, allowing efficient and accurate hand shape
extraction, as shown in Figure 1c. Our method was also extended to handle
dynamic scenes, being suitable for real-time processing.

We show that depth discontinuities (aka depth edges) may be used as
a signature to reliably discriminate among complex hand configurations in
the ASL alphabet, which would not be possible with current glove-free vi-
sion methods. For classification, we have used a shape descriptor similar in
spirit to shape context matching [2], which is invariant with respect to image
translation and scaling.

The remaining of this paper is organized as follows: we discuss related work
in Section 2 and describe our multi-flash technique for extraction of depth
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edges in Section 3. Section 4 covers our shape descriptor and classification
method. We report our experimental results in Section 5 and discuss issues
and perspectives of our technique in Section 6. Finally, conclusions and future
work are addressed in Section 7.

2 Related Work

Regarding word level sign recognition, most successful approaches are based
on statistical, generative models. Starner and Pentland [17] presented a video-
based system for the recognition of short sequences of American Sign Lan-
guage (ASL) based on HMMs. Using a 40 word lexicon, they achieved 92%
word accuracy with a desk mounted camera and 98% accuracy with a camera
mounted in a cap worn by the user. Vogler and Metaxas [18] described an
HMM-based system for continuous ASL recognition, using three video cam-
eras with an eletromagnetic tracking system for obtaining 3D motion. They
achieved 90% word accuracy on a 53 word lexicon. More recently, Chen et
al. [4] proposed a system to handle a large vocabulary of the Chinese Sign
Language (5113 signs). Using CyberGloves and a method based on a fuzzy
decision tree and HMMs, they reported a recognition rate of 91.6%. On the
other hand, scalability is still an issue for glove-free word level sign recognition.

For fingerspelling recognition, most proposed methods rely on instru-
mented gloves, due to the hard problem of discriminating complex hand con-
figurations with vision-based methods. Lamar and Bhuiyant [8] achieved letter
recognition rates ranging from 70% to 93%, using colored gloves and neural
networks. More recently, Rebollar et al. [14] used a more sophisticated glove
to classify 21 out of 26 letters with 100% accuracy. The worst case, letter ’U’,
achieved 78% accuracy.

Shadows, the main cue used in our work, have already been exploited
for gesture recognition and interactive applications. Segen and Kumar [15]
describes a system which uses shadow information to track the user’s hand
in 3D. They demonstrated applications in object manipulation and computer
games. Leibe et al. [9] presented the concept of a perceptive workbench, where
shadows are exploited to estimate 3D hand position and pointing direction.
Their method used infrared lighting and was demonstrated in augmented
reality gaming and terrain navigation applications. In this book, Kale, Kwan,
and Jaynes, demonstrate an interesting method for user pushbutton selection
in projected interfaces.

These approaches consider light sources far away from the camera center of
projection and casted shadows are separated from the objects. In contrast, our
approach consider light sources with small baseline distance from the camera,
allowing them to be built in a self-contained device, no larger than existing
digital cameras.
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Fig. 2. Imaging geometry. Shadows of the gray object are created along the epipolar
ray. We ensure that depth edges of all orientations create shadow in at least one
image while the same shadowed points are lit in some other image.

3 Multi-flash Imaging

The technique for detecting shape features in images was recently described
in [13], for non-photorealistic rendering. For completeness we review the basic
idea here.

The method is motivated by the observation that when a flashbulb (close
to the camera) illuminates a scene during image capture, thin slivers of cast
shadow are created at depth discontinuities. Moreover, the position of the
shadows is determined by the relative position of the camera and the flashbulb:
when the flashbulb is on the right, the shadows are created on the left, and so
on. Thus, if we can shoot a sequence of images in which different light sources
illuminate the subject from various positions, we can use the shadows in each
image to assemble a depth edge map using the shadow images.

3.1 Imaging Geometry

In order to capture the intuitive notion of how the position of the cast shadows
are dependent on the relative position of the camera and light source, we
examine the imaging geometry, illustrated in Figure 2. Adopting a pinhole
camera model, the projection of the point light source at Pk is at pixel ek on
the imaging sensor. We call this image of the light source the light epipole. The
images of (the infinite set of) light rays originating at Pk are in turn called
the epipolar rays, originating at ek. We use the terms depth discontinuities
and depth edges interchangeably here.

There are two simple observations that can be made about cast shadows:

• A shadow of a depth edge pixel is constrained to lie along the epipolar
ray passing through that pixel.

• When a shadow is induced at a depth discontinuity, the shadow and the
light epipole will be at opposite sides of the depth edge.

These two observations suggest that if we can detect shadow regions in
an image, then depth edges can be localized by traversing the epipolar rays
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Fig. 3. (a) Our prototype to capture depth discontinuities. (b) Setup for static scenes.
(c) Setup for dynamic scenes.

starting at the light epipole and identifying the points in the image where the
shadows are first encountered.

3.2 Removing and Detecting Shadows

Our approach for reliably removing and detecting shadows in the images is
to position lights so that every point in the scene that is shadowed in some
image is also captured without being shadowed in at least one other image.
This can be achieved by placing lights strategically so that for every light,
there is another on the opposite side of the camera to ensure that all depth
edges are illuminated from two sides. Also, by placing the lights close to the
camera, we minimize changes across images due to effects other than shadows.

To detect shadows in each image, we first compute a shadow-free image,
which can be approximated with the MAX composite image, which is an image
assembled by choosing at each pixel the maximum intensity value among
the image set. The shadow-free image is then compared with the individual
shadowed images. In particular, for each shadowed image, we compute the
ratio image by performing a pixel-wise division of the intensity of the shadowed
image by the intensity of the MAX image. The ratio image is close to 1 at
pixels that are not shadowed, and close to 0 at pixels that are shadowed.
This serves to accentuate the shadows and remove intensity transitions due
to surface material changes.

3.3 Algorithm

Codifying the ideas discussed we arrive at the following algorithm:

Given n light sources positioned at P1, P2...Pn,
• Capture n pictures Ik, k = 1..n with a light source

at Pk

• For all pixels x, Imax(x) = maxk(Ik(x)), k = 1..n
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Fig. 4. Detecting depth edges. (a) Hand image. (b) Ratio image (right flash). (c)
Detected edges.

• For each image k,
	 Create a ratio image, Rk, where

Rk(x) = Ik(x)/Imax(x)
• For each image Rk

	 Traverse each epipolar ray from epipole ek

	 Find pixels y with step edges with negative transition
	 Mark the pixel y as a depth edge

3.4 Building Multi-Flash Cameras

We propose using the following configuration of light sources: four flashes
at left, right, top and bottom positions (Figure 3). This setup makes the
epipolar ray traversal efficient. For the left-right pair, the ray traversal is
along horizontal scan lines and for the top-bottom pair, the traversal is along
vertical direction. Figure 4 illustrates depth edge detection using this setup.

We have also extended our method to dynamic scenes. As in the static case,
we bypass the hard problem of finding the rich per-pixel motion representation
and focus directly on finding the discontinuities i.e., depth edges in motion.
We refer to [13] for a description of the algorithm. The setup is similar to
the static case with flashes around the camera, but triggered in a rapid cyclic
sequence, one flash per frame (see Figure 3c).

Our basic prototype for static scenes (Figure 3b) makes use of a 4
MegaPixel Canon Powershot G3 digital camera. The four booster (slaved
Quantarray MS-1) 4ms duration flashes are triggered by optically coupled
LEDs turned on sequentially by a PIC microcontroller, which in turn is inter-
rupted by the hot-shoe of the camera. For dynamic scenes, our video camera
(Figure 3c) is a PointGrey DragonFly camera at 1024x768 pixel resolution,
15 fps which drives the attached 5W LumiLeds LED flashes in sequence. An-
other alternative setup for dynamic scenes based on colored lights, which we
are currently investigating, will be discussed in Section 6.1.
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4 Shape Descriptor and Classification

In this section, we present a shape descriptor for depth edges which is invariant
with respect to image translation and scale. Our approach is simple and yet
very effective. It has been recently evaluated on a large dataset for content-
based image retrieval [11].

Fig. 5. Shape descriptor used for classification.

The basic idea is illustrated on Figure 5. For each edge pixel of interest, we
first analyze its context by counting the number of other edge pixels in eight
neighboring regions, as shown in Figure 5(a). This gives us a vector of eight
elements Ci, 1 ≤ i ≤ 8 (Figure 5b). We then normalize each element for scale
invariance (Figure 5c) by denoting Si = Ci/C, where C =

∑8
i Ci. Finally,

thresholding is applied (Figure 5d), so that each element encodes the infor-
mation of either high or low density of edge pixels along a specific direction
of the pixel of interest. The threshold value 0.15 is obtained empirically.

Inspired by the concept of Local Binary Patterns [12] in the field of tex-
ture analysis, the values ”0”s and ”1”s are arranged counter-clockwise from a
reference region (in our example, the bottom-right region) to express an 8-bit
binary number. The correspondent decimal number d, 0 ≤ d ≤ 255 is used
to vote for the respective bin in the histogram shown in Figure 5e. A 256-
dimensional feature vector is then obtained by applying the above mentioned
process to all edge pixels in the depth edge image.

Since the descriptor is based on the relative position of edge pixels, it is
clear that it is invariant with respect to image translation. Scale invariance is
obtained in the normalization step. The descriptor can also be made rotation
invariant [11]. However, this may not be appropriated for some fingerspelling
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Fig. 6. (a) Letter ’K’ of ASL alphabet. (b),(c) Mean Shift segmentation algorithm
with different parameter settings. (d) Output of our method.

alphabets (e.g., Japanese Sign Language), which might have letters that are
rotated versions of the others.

We have used a nearest-neighbor technique for classification. Initially, su-
pervised learning is carried out by acquiring a set of images for each letter
in the fingerspelling alphabet. Depth edges are then extracted and the shape
descriptor technique is applied, so that a training database comprised of la-
beled 256-dimensional feature vectors is formed. Given a test image, features
are extracted and the class of the best match training sample according to
Euclidean distance is reported.

5 Experiments

We compared the hand contours obtained using our technique with the output
of a traditional Canny edge detector [3] and a state-of-the-art Mean Shift seg-
mentation algorithm [5]. We refer to Figure 1 for a comparison of our method
with Canny edges. Changing parameter settings in the Canny algorithm could
reduce the amount of clutter, but important edges along the hand shape would
still not be detected. Figure 6 shows a comparison with Mean Shift algorithm.
Clearly, due to the low intensity skin-color variation in the inner hand region,
the segmentation method is not able to detect important boundaries along
depth discontinuities. Our method accurately locates depth edges and also
offers the advantage that no parameter settings are required.

We realized that depth edges are good features to discriminate among
signs of fingerspelling alphabets. Even when the signs look very similar (e.g.,
letters ’E’,’S’ and ’O’ in ASL alphabet), the depth edge signature is quite
discriminative (see Figure 7). This poses an advantage over vision methods
that rely on appearance or edge-based representations. Note that our method
does not detect edges in finger boundaries with no depth discontinuity. It turns
out that this is helpful to provide more unique signatures for each letter.

In order to quantitatively evaluate the advantages of using depth edges
as features for fingerspelling recognition, we considered an experiment with
the complete ASL alphabet, except letters ’J’ and ’Z’, which require motion
analysis to be discriminated. We collected a small set of 72 images using our
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Fig. 7. From left to right: input image, Canny edges and depth edges. Note that our
method misses finger boundaries due to the absence of depth discontinuities. This
turns out to be helpful to provide unique signatures for each letter.

multi-flash camera (three images per letter, taken at different times, with
resolution 640x480). The images showed variations in scale, translation and
slight variations in rotation. The background was plain, with no clutter, since
our main objective is to show the importance of obtaining clean edges in the
interior of the hand. It is worth mentioning that textured but flat/smooth
backgrounds would not affect our method, but would make an edge detection
approach (used for comparison) much more difficult.

For each image, features were extracted as described in Sections 3 and 4.
For sake of comparison, we also considered shape descriptors based on Canny
edges. Recognition rate was obtained using a leave-one-out scheme in the
collected dataset. Our approach achieved 96% of correct matches, compared
with 88% when using Canny edges.

Rebollar [14] mentioned in his work that letters ’R’, ’U’ and ’V’ represented
the worst cases, as their class distributions overlap significantly. Figure 8 shows
these letters and their corresponding depth edge signatures. Note that they are
easily discriminated with our technique. In the experiment described above,
the method based on Canny edges fails to discriminate them.

Figure 9 shows a difficult case for traditional methods, where our method
also fails to discriminate between letters ’G’ and ’H’. In this particular case,
we could make use of additional information, such as the intensity variation
that happens between the index and the middle finger in letter ’H’ and not
’G’.

All the images in our experiment were collected from the same person. We
plan to build a more complete database with different signers. We believe that
our method will better scale in this case, due to the fact that texture edges
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(e.g., wrinkles, freckles, veins) vary from person to person and are eliminated
in our approach. Also, shape context descriptors [2] have proven useful for
handling hand shape variation from different people. For cluttered scenes, our
method would also offer the advantage of eliminating all texture edges, thus
considerably reducing clutter (see Figure 10)

For segmented hand images with resolution 96x180, the computational
time required to detect depth edges is 4ms on a Pentium IV 3GHz. The
shape descriptor computation requires on average 16ms. Thus, our method
is suitable for real-time processing. For improving hand segmentation, depth
edges could be computed in the entire image. In this case, the processing time
for 640x480 images is 77ms.

Fig. 8. Letters ’R’, ’U’ and ’V’, the worst cases reported in [14]. Note that the use
of a depth edge signature can easily discriminate them.

Fig. 9. A difficult case for traditional algorithms (letters ’G’ and ’H’), where our
method may also fail.

We intend to adapt our method for continuous sign recognition in video.
Demonstration of detection of depth edges in motion are showed in our previ-
ous work [13]. We are currently exploiting a frequency division multiplexing
scheme, where flashes with different colors (wavelength) are triggered simulta-
neously (see Section 6.1). We hope this will allow for efficient on-line tracking
of depth edges in sign language analysis.

6 Discussion

In this section, we discuss issues related to our method and propose ways to
overcome failure situations. Then we follow with a brief discussion on related
work.
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Fig. 10. (a) Canny edges (b) Depth edges. Note that our method considerably reduces
the amount of clutter, while keeping important detail in the hand shape.

There is a tradeoff in choosing the baseline distance between camera
and light sources. A larger baseline is better to cast a wider detectable
shadow in the internal edges of the hand, but a smaller baseline is needed
to avoid separation of shadow from the fingers (shadow detachment) when
the background is far away. The width of the abutting shadow in the im-
age is d = fB (z2 − z1)/(z1z2), where f is the focal length, B is baseline in
mm, and z1, z2 are depths, in mm, to the shadowing and shadowed edge.
Shadow detachment occurs when the width, T , of the object is smaller than
(z2 − z1)B/z2. Fortunately, with rapid miniaturization and sophistication of
digital cameras, we can choose a small baseline while increasing the pixel
resolution (proportional to f), so that the product fB remains constant.

What if there is no cast shadows due to lack of background? In these
cases only the outermost depth edge, the edge shared by foreground and
distant background, is missed in our method. This could be detected with
a foreground-background estimation technique. The ratio of I0/Imax (image
acquired with no flash over max composite of flash images), is near 1 in back-
ground and close to zero in interior of the foreground.

Another solution for both problems cited above is to consider a larger
baseline and explore it to detect only internal edges in the hand, while using
traditional methods (such as skin-color segmentation or background subtrac-
tion) to obtain the external hand silhouette.

We noticed that depth edges might appear or disappear with small changes
in viewpoint (rotations in depth). This was in fact explored in the graphics
community with the concept of suggestive contours [6]. We believe this may
be a valuable cue for hand pose estimation [1].

A common thread in recent research on pose estimation involves using a
3D model to create a large set of exemplars undergoing variation in pose,
as training data [16, 1]. Pose estimation is formulated as an image retrieval
problem in this dataset. We could use a similar approach to handle out-of-
plane hand rotations. In this case, a 3D hand model would be used to store
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Fig. 11. (a) Our setup for dynamic scenes with different wavelength light sources.
(b) Input image. Note the shadows with different colors. (c) Depth edge detection.

a large set of depth edge signatures of hand configurations under different
views.

We have not seen any previous technique that is able to precisely acquire
depth discontinuities in complex hand configurations. In fact, stereo methods
for 3D reconstruction would fail in such scenarios, due to the textureless skin-
color regions as well as low intensity variation along occluding edges.

Many exemplar-based [1] and model-based [10] approaches rely on edge
features for hand analysis. We believe that the use of depth edges would
lead to significant improvements in these methods. Word level sign language
recognition could also benefit from our technique, due to the high amounts of
occlusions involved. Flashes in our setup could be replaced by infrared lighting
for user interactive applications.

6.1 Perspectives: Variable Wavelength

In real-world scenarios, our method would require a high speed camera, with
flashes triggered in a rapid cyclic sequence, to account for the fast gesture
motion in sign language analysis. However, current off-the-shelf high speed
cameras are still expensive and limited to store just a few seconds of data
because of the huge bandwidths involved in high speed video.

We are currently exploring a different approach for video-based gesture
recognition that could be used with standard inexpensive cameras. The idea
is to use light sources with different colors, so that we can trigger them all
in the same time, in one single shot, and then exploit the colored shadows to
extract depth edges.

Figure 11 shows a preliminary result using a camera with three lights of
different color: red, green and blue. Details about our algorithm using colored
lights will be described in another article (in preparation).
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7 Conclusions

We have introduced the use of depth edges as features for reliable, vision-based
fingerspelling recognition. We basically bypass dense 3D scene reconstruction
and exploit only depth discontinuities, which is a valuable information to rec-
ognize hand postures with high amounts of finger occlusions, without making
use of instrumented gloves.

Our method is simple, efficient and requires no parameter settings. We
demonstrated preliminary but very promissing experimental results, show-
ing that the use of depth edges outperforms traditional Canny edges even
considering simple scenarios with uncluttered background. In more complex
scenarios, our technique significantly reduces clutter by eliminating texture
edges and keeping only contours due to depth discontinuities.

Evaluating our method in a large database with different signers and ad-
dressing the problem of continuous signing in dynamic scenes are topics of
future work.
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