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Abstract

Traditional stereo matching algorithms are limited in thedbility to produce accurate results near
depth discontinuities, due to partial occlusions and tiotaof smoothness constraints. In this paper, we
use small baseline multi-flash illumination to produce & get of feature maps that enable acquisition of
discontinuity preserving point correspondences. Firsinfa single multi-flash camera, we formulate a
qualitative depth map using a gradient domain method thabdes object relative distances. Then,
in a multiview setup, we exploit shadows created by lightrses to compute an occlusion map.
Finally, we demonstrate the usefulness of these features maapncorporating them into two different
dense stereo correspondence algorithms, the first basestainskarch and the second based on belief
propagation. Experimental results show that our enhantaécs algorithms are able to extract high
quality, discontinuity preserving correspondence mapmfscenes that are extremely challenging for
conventional stereo methods. We also demonstrate thal smseline illumination can be useful to
handle specular reflections in stereo imagery. Differasrfmost existing active illumination techniques,
our method is simple, inexpensive, compact, and requiresatibration of light sources.

Index Terms

stereo matching, multi-flash imaging, depth discontiesiti

|. INTRODUCTION

Stereo vision algorithms have been investigated for mamysyen computer vision in order
to infer 3D structure from images captured with differenéwpoints. The most challenging
problem in stereo reconstruction is the establishment sfialicorrespondence among images.
This is a fundamental operation that is the starting pointnost geometric algorithms for 3D
shape reconstruction and motion estimation.

Intuitively, a complete solution to the correspondencéfam would produce: (1) a mapping
between pixels in different images where there is a cormedgace, and (2) labels for scene

points that are not visible from all views — where theren@scorrespondence
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In the past two decades, intense interest in the correspoadaroblem has produced many
excellent algorithms for solving the first part of the probleWith a few exceptions, most
algorithms for dense correspondence do not address ocmctugixplicitly [1]. The occlusion
problem is difficult partly because distinguishing sharpcdntinuities in depth (also known
as depth edges or occluding contours) from edges causedflegtaace changes remains a
fundamental unsolved vision problem [2].

A promising method for addressing the occlusion problemoisuse active illumination.
In fact, many techniques that make use of lighting changee bh&en proposed to solve the
correspondence problem in stereo reconstruction [3],[4],In general these techniques offer a
tradeoff between accuracy and cost of the equipment, asaweliher issues such as compactness,
light source calibration, and number of images to be acquitgher active shape reconstruction
approaches such as photometric stereo [6] and shape fradowbd7] avoid the correspondence
problem by using multiple images of the scene captured wattiable illumination, but fixed
viewpoint. A common limitation of these methods is that tlght sources must surround the
object in order to create sufficient shading and shadow wamnidrom (estimated or known) 3D
light positions. This requires a fixed lighting rig, whiclmiits the application of these techniques
to laboratory and industrial settings; such a setup is ictmal to build into a self-contained
camera.

Recently, we have demonstrated a reliable method for deg¢edepth edges in real world
scenes [8]. Our approach is based on a simple and inexpensiéication of the capture setup:
a multi-flash camera is used with flashes strategically jpost to cast shadows along depth
discontinuities. We have shown the effectiveness of nfldgh imaging in different vision and
graphics applications, including non-photorealisticdenng [8], medical imaging [9], specular
reflection reduction [10], and visual recognition [11].

In this paper, we propose a stereo framework based on smsliba active illumination,
which allows accurate correspondence maps on scenes \ghihdepth complexity and specular

reflections. In particular, we show how multi-flash illumiieea can be used to produce a rich
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set of feature maps that are useful in dense 3D reconstruddar feature maps are based on
important cues, including: (1) depth edges, (2) the sigrhefdepth edge (which tells the side
of the occluding object), and (3) information about objesative distances.

Starting with these cues, we derive a qualitative depth map fa single multi-flash camera.
In a multiview setup, we show how binocular half-occludexets can be explicitly and reliably
labeled, along with depth edges. We demonstrate how theréeataps can be used effectively by
incorporating them into two different dense stereo comesience algorithms, the first based on
local search and the second based on belief propagationp&enhto passive stereo techniques,
our method offers significant improvements in accuracyeegly in regions near depth discon-
tinuities. Our feature maps could be used to complementiegiactive lighting approaches and
our method offers the advantages of being simple, inexpenand compact, while requiring no
calibration of light sources.

The remainder of this paper is organized as follows: Sedtioaviews related work and the
basic technique to detect depth edges with multi-flash ithation. Then, a brief overview about
the implementation setups used in our work is given in Sedfio In Section IV, we formulate
a qualitative depth map, followed by the computation of anlugion map in Section V. The
usefulness of these feature maps are demonstrated in latglabal stereo algorithms in Section
VI. Finally, Section VII discusses pros and cons of our apploand provides comparison with

existing techniques.

[I. RELATED WORK

Although significant progress has been made in dense twoefrstereo matching (see [1]
for a comprehensive survey), producing accurate resulis depth discontinuities remains a
challenge. In general, dense stereo techniques can befiethsss local or global, depending
whether they rely on local window-based computations orntii@mization of a global energy
function. In local-based methods, the disparity compatatit a given point depends only on
intensity values within a finite window. Clearly, these teitfues assume that all pixels within

the window have the same disparity and thus are sensitivealgect boundaries. Attempts to
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alleviate this problem include the use of adaptive windo®#] and shiftable windows [13].

Occlusion has been modeled explicitly through global oaton approaches based on
dynamic programming [14], [15], [16]. Stereo matching isfoilated as finding a minimum cost
path in the matrix of all pairwise matching costs between twaesponding scanlines. These
techniques, however, often show a streaking effect (asliseanare matched independently)
and assume ordering constraints, which may be violated thith objects in the scene. More
recently, global stereo approaches based on Markov Randeldsmhave received great attention
[17], [1]. These methods minimize an energy function (euging belief propagation [18] or
graph cuts [19]) that includes a data term and a smoothness #dthough discontinuities and
occlusion can be explicitly modeled [19], [20], intensityges and junctions are generaly used
as cues for depth discontinuities. Ideally, smoothnesstcaints should be supressed only at
occluding edges, not at texture or illumination edges.

The correspondence problem can be significantly simplifigdubing active illumination
methods based on structured light [21], [22]. A structuigltisystem is based on the projection
of a single pattern or a set of patterns onto the scene whittersviewed by a single camera or
a set of cameras. Time-multiplexing or temporal coding [234] is the most common pattern
projection technique. The basic idea is to project a setftdréint patterns successively onto the
scene, so that each point viewed by a camera has a specifiv@at&ormed by the sequence
of illumination values accross the projected patternsigsBmethods allow accurate computation
of correspondence maps, but are limited to handle dynangicesc This issue is addressed by
techniques that project a single pattern with pixel codiagda on a spatial neigborhood [3].
However, depth discontinuities pose a problem as local snmegs of the measuring surface is
assumed in order to correctly decode the pixel neighborhOtiter techniques based on colored
patterns [25], and space-time stereo [26], [4] have also lpreposed. Overall, compared to
passive stereo techniques, structured light methods bifgr quality correspondence maps and
3D acquisition, but are in general much more expensive anded to indoor scenes.

Photometric stereo [27] is a simple, inexpensive activatiig approach that acquires 3D
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information without relying on the correspondence problétaultiple images of the scene are
captured under different illumination conditions (but fixaewpoint) and used to estimate a field
of surface normals, which is then integrated to produce taser Photometric stereo methods
are suitable for reconstructing the shape of objects witifioum albedo, thus complementing
conventional stereo, which is best for textured surfacel varying reflectance. They work well
for smooth surfaces, but are unstable near depth discammor rapid surface normal changes.
In general, most techniques assume Lambertian surfacetesfte, but recent research deals
with spatially varying bidirectional reflectance distritmn functions (BRDF) [6].

Helmholtz stereo [5] is a technique that combines activatiiigy with viewpoint variation
to estimate both surface normals and depth with arbitrarfase reflectance. The idea behind
Helmholtz Stereopsis is to exploit the symmetry of surfaeectance, commonly referred to
as Helmholtz reciprocity. The image acquisition proceed$nio simple steps: first, an image
is acquired with the object/scene illuminated by a singleplight source. Then, the positions
of the camera and light source are swapped, and the secomy imaacquired. By acquiring
the images in this manner, they ensure that for all corredipgrnpoints in the images, the ratio
of the outgoing radiance to the incident irradiance is theesarhis is, in general, not true for
stereo pairs - unless the surfaces have Lambertian reftectan

Techniques for shape from shadows (or darkness) [7] builohéirtuous representation (shad-
owgram) from a moving light source from which continuous ttiepstimates are possible.
However, it involves a difficult problem of estimating canibus heights and requires accurate
detection of start and end of shadows. Shadow carving wasopeal by Savarese et al. [28] as
a technique to refine shape estimation using shadow consystéhecks. Bouguet and Perona
[29] proposed a simple and inexpensive system where thenusegs a pencil in front of a light
source to cast moving shadows on the object. The 3D shapes afljfect is extracted from the
spatial and temporal location of the observed shadow. Iemgénhese approaches do not allow
compact setups, due to the assumption of light sourceswswdiing the object. Good reviews of

shadow-based shape analysis methods are available in[§3Q],
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Fig. 1. (a) Multi-flash camera (b) Image taken with left flash. (c) @spondent ratio image and traversal direction. (d)
Computed depth edges. Note that we can obtain the sign of dequtin edge pixel, indicating which side of the edge is the
foreground

A. Depth Edges with Multi-Flash

Before introducing our techniques, we briefly review theibadea of detecting depth edges
with multi-flash imaging [8].

The main observation is that when a flash illuminates a scemmgl image capture, thin
slivers of cast shadow are created at depth discontinuiiess, if we can shoot a sequence of
images in which different light sources illuminate the sdbjfrom various positions, we can
use the shadows in each image to assemble a depth edge mggheshadow images.

Shadows are detected by first computirghadow-free imagevhich can be approximated with
the maximum composite image, created by choosing at eaeh thix maximum intensity value
among the image set. The shadow-free image is then compatkedhe individual shadowed
images. In particular, for each shadowed imageat imageis computed by performing a
pixel-wise division of the intensity of the shadowed imagetbe intensity of the maximum
image. Although the pixels in the ratio image are not cortsiam one point to another, they
are very similar and close to 1.0 for non-shadowed regiond, dose to 0.0 for shadowed
regions. This allows us to segment shadows very reliably.

The final step is to traverse each ratio image along its epipalys (as given by the respective
light positions) and mark negative transitions as depthesdie use an implementation setup
with four flashes at left, right, top and bottom positions jethmakes the epipolar ray traversal
aligned with horizontal and vertical scanlines. Figure llisirates the main idea of the depth
edge detection algorithm. Note that the sign of the edgesis abtained, indicating which part

is the background and which part is the foreground in a loeayhborhood.
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[1l. MULTI-FLASH IMAGING SETUPS

Throughout this paper, we will investigate different muiilish imaging setups for obtaining a
qualitative depth map of the scene, detecting occlusioalpix stereo, and computing disconti-
nuity preserving disparity maps. In this section, we briglilgcuss the purpose of these different
implementation setups.

Figure 2a shows the basic multi-flash camera setup with fashés, used to detect depth
edges, as described in Section II-A. This setup uses a 4pn@jaanon Powershot G3 (see
Figure la). A microcontroller board triggers sequentidlg four flashes mounted around the
camera. The board synchronizes the flashes to the imageregptacess by sensing the flash
trigger signal from the camera hot shoe. We will show in SectV that this particular setup
can also be used to obtain a qualitative depth map of the scene

Different camera-flash configurations may be used to combimall baseline multi-flash
illumination with stereo reconstruction. Figure 2b showsereo setup with two cameras where
each camera has its own set of flashes. This setup is parlycukeful to detect occlusions in
stereo, as we will show in Section V.

An alternative implementation setup is shown in Figure Bcthis case, the flashes surround
both cameras, and, for each flash, two images are capturedtaiously by the two cameras.
This setup would be more appropriate to process dynamicesc@rsing lights with different
wavelength [44] or triggered in a rapid cyclic sequencem@ared to the setup showed in Figure
2b, it offers advantages in terms of acquisition time, whéguiring only four light sources.
On the other hand, the top and bottom ratio image traversalsiépth edge detection is not
aligned with the pixel grid, since the top and bottom flashes positioned on the upper and
lower diagonals of the center of projection of the cameras.

Figure 2d shows an implementation setup that uses only anereawith a stereo adapter. With
such adapter, it is possible to obtain the stereo image ptirarsingle shot, eliminating the need
for camera synchronization. Experiments with this implatagon setup will be demonstrated

in Section VI-C.
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Fig. 2. Different multi-flash implementation setups. (a) Basiaipaised for depth edge detection and qualitative depth map
estimation. (b) Stereo multi-flash setup where each camasaits own flashes. This setup is useful for occlusion detedti
stereo matching. (c) Stereo setup with flashes surroundoty bameras, for faster acquisition. (¢) Flashes surromgdonly
one camera with a Pentax stereo adapter.

V. QUALITATIVE DEPTHMAP

In this section, we use a single multi-flash camera to derigpaitative depth map based
on shadow width information. Our method is related to shapmfshadow techniques [7], but
differs significantly in methodology. At this point we aretnaterested in quantitative depth
measurements. Rather, we want to segment the scene, whildtaneously establishing object
depth-order relations and approximate relative distanteéss turns out to be valuable prior

information for stereo.

A. Shadow Width Estimation

A natural way of extending our depth edge detection methodstomate shadow width is
to measure the length of regions delimited by a negativesifian (which corresponds to the
depth edge) and a positive transition along the epipolarralye ratio images. However, finding
the positive transition is not an easy task, due to intexcgdlas and the use of non-point light
sources.

Figure 3a-c illustrates this problem: note that the intigngrofile along the vertical scanline
depicted in the ratio image has spurious transitions duattgreflections in the umbra region
and a smooth transition near the end of the shadow (in thenplerauregion). Estimation of the
shadow width based on local-area-based edge filtering l@adarealiable results. In contrast,

we take advantage of the global shadow information. We appty mean-shift segmentation
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Fig. 3. (a) Ratio Image. (b) Original Image. (c) Intensity plot atpthe vertical scanline depicted in (a). Note that there is no
sharp positive transition. (d) Meanshift segmentation ébedt shadow, shown in white color

algorithm [32] in the ratio image to segment the shadowswailg accurate shadow width
estimation (see Figure 3d). In Figure 3c, the small pertisha of the ratio values along the
non-shadowed region occur due to the rounded object surfaae the depth edge. However,
this is not a problem for segmentation, since the negataesttions due to shadows are much

sharper.

B. Shadows and Relative Depth

We now look at the imaging geometry of the shadows, depiate#figure 4, assuming a
pinhole model. The variables involved afe(camera focal length)3 (camera-flash baseline),
21, 22 (depths to the shadowing and shadowed edgPsjshadow width) andi (the shadow

width in the image plane). Assuming a flat background, we hheerelationshipé} = % and

D_ — g. These relationships hold even if the edge of the object doedie on the principal

z2—21

axis of the camera. It follows that the shadow width in thegma&an be computed as:

fB(Z2 - 21)

2122

d= (1)
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Fig. 4. Imaging geometry showing the relationship of shadows arative depth

Working on this equation, we have:

d 1 1

B u = @

Note that for each depth edge pixel, we can compute the leftl lsedde of equation 2, which

encodes the relative object distances (difference of sevdepth magnitudes). This allows us to
create a gradient field that encodes sharp depth changdsdyeidient zero everywhere except
at depth discontinuities) and perform 2D integration osthradient field to obtain a qualitative

depth map of the scene. This idea is described in more degkmivb

C. Gradient Domain Solution

Let Z(z,y) be the unknown two-dimensional depth map of the scene(ard V% be the
gradient of the inverse depth values. We define the gradieldtd to be a modified version of

G, having the same values &5at depth edge locations, but zero values everywhere else:

@(x,y) = (0,0)" if (x,y) is not a depth edge pixel (3)

~

G(z,y) = V

otherwise
Z(x,y)

We will first show that we can use equation (2) to compdtdirectly with the shadow width
information. Then, we use a Poisson solver to integ€atand obtain the% field, from which
we can obtain the qualitative depth m&p up to an unknown constant if the focal length and

camera-flash baseline are not known.
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As shown in equation (2), the quantitf% encodes the gradient of inverse depth valWies at
depth edge locations, and therefore can be used to computgatient field? directly. Since
is the gradient of a two-dimensional function, it is spedifiey two components;; = (Gy, G.),
where G, is the horizontal component ard, is the vertical component. The shadow width
d is also specified by two components; corresponds to the width of the shadow along the
horizontal direction for a particular depth edge pixel, ahdcorresponds to the width of the
shadow along the vertical direction. The shadows detecyethd left and right flash are used
to set}‘f—g, while the shadows detected by the top and bottom flashessarck to set}%.

There is still another detail that we need to consider to agmthe gradient field:. We need
to know the sign of each gradient component at each depth pidge This information can
be easily obtained through the sign of the depth edge pixebhth orientation, which tells us
which part of the edge is the foreground and which part is thekground (see Section II-A).
Let s,(x,y) be the sign(—1,+1) of the depth edge pixglr,y) along the horizontal direction
ands,(, y) be the sign for the vertical direction. We can now compiite (G),, G,) with G,

being defined as:

N

Gr(z,y) = 0 if (x,y) is not a depth edge pixel

— dh;xB’y) sn(z,) otherwise (4)

And similarly for the vertical component:

N

Go(z,y) = 0 if (X,y) is not a depth edge pixel

dy(z,9)
fB

sy(z,y) otherwise (5)
Our qualitative depth map can be obtained with the followstgps:
e Compute the gradier(ﬁ(x,y) using equations (4) and (5).

~ ~ 2
e IntegrateGG by determiningM which minimizes‘VM -Gl .

e Compute the qualitative depth map= .
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It is important to note that the gradient vector figid may not be integrable. In order to
determine the imagé/, we use a similar approach as the work of Fattal et al. [33} Th
observation is that the optimization problem to minimjXeM — @\2 is equivalent to solving
the Poisson differential equatidvi*)\/ = div G, involving a Laplace and a divergence operator.
We solve this partial differential equation using the stddfull multi-grid method, which
involves discretization and the solution of a linear systerdifferent grid levels. For specifying
boundary conditions, we pad the images to square imagege®tls nearest power of two, and
then crop the result image back to the original size. The fijalitative depth map is obtained
by 7, sinceM contains the inverse of the real depth values.

For many applications, the background may be not flat andaba fength and camera-flash
baseline unknown. In this case, we can gét to 1.0. Now we cannot obtain the absolute
distances from the background. Instead we get relativearmtiss proportional to the shadow
width and a qualitative depth map with segmented objectswiNeshow in Section VI-B that

this is a very useful prior for stereo matching.

D. Synthetic Example

Figure 5 shows our qualitative depth map computation usymghgtic images. We used as
input four images with manually created shadows correspgntb the top, bottom, left and
right flashes, as shown on the top of the figure. The resultaalitgtive depth map, as well as
the correspondent 3D plot, are shown at the bottom of thediguote that the elevations of the

rectangular areas are proportional to the associatedhefgthadows in the images.

E. Real Images

Figure 6 illustrates results obtained for the qualitativeptth map computation from real
images, using a single multi-flash camera. As we can see, atinau effectively segments
the scene, encoding object relative distances throughhthdosv width information. Note that
the images have low intensity variation and small depth ghana challenging scenario for most

3D reconstruction methods.
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Qualitative Depth

Fig. 5. Top: Synthetic images with manually created shadows cporeding to the top, bottom, left and right flashes. Bottom:
Qualitative depth map and corresponding 3D plot

Our qualitative depth map also offers the advantage of ingat slope in intensity when there
are gaps in the depth contours. Note in the hand image thetbrtraasition between the thumb
and the palm of the hand. This is a useful property for seimgothness constraints in stereo
matching.

In Figure 7, we show a more complex example. The scene centaamy depth discontinuities
and specular reflections, which poses a serious problem émt 8D reconstruction methods.
We used our previous work [10] to eliminate spurious edges tduspecularities in the depth
edge map. The qualitative depth map and the 3D plot are showgures 7b-c.

Clearly, our method is not able to handle slanted surfaceswrded objects, since the depth
variation is smooth without a sharp discontinuity. This & a problem if we use it as a prior

for stereo reconstruction.

V. OcCLUSION DETECTION

Binocular half-occlusion points are those that are visiblenly one of the two views provided
by a binocular imaging system [34]. They are a major sourcesrobr in stereo matching
algorithms, due to the fact that half-occluded points haveorrespondence in the other view,

leading to false disparity estimation.
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Fig. 6. From left to right: original image, qualitative depth mapdithe corresponding 3D plot. Note that our method captures
small changes in depth and is robust in the presence of logngity variations across depth contours

(b) (c)

Fig. 7. (a) Complex scene with many depth discontinuities and $pe@ilections. (b) Qualitative depth map. (c) Corresporgli
3D plot
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Current approaches to detect occlusion points are passiee[84] for a comparison among
five different techniques). They rely on the correspondemadblem and thus are unable to
produce accurate results for many real scenes. In genkesle tmethods report a high rate of
false positives and have problems to detect occlusionsaasaof the scene dominated by low

spatial frequency structure.

A. Occlusions Bounded by Shadows

Rather than relying on the hard correspondence problem xpleieactive lighting to detect
binocular half-occlusions. Assume we have a stereo pairufititash cameras with horizontal
parallax and light sources arranged as Figure 8. By platiadight sources close to the center of
projection of each camera, we can use the length of the sisad®@ated by the lights surrounding
the other camera to bound the half-occluded regions.

This idea is illustrated in Figure 8. Note that the half-acidd regionS is bounded by the
width of the shadows; and.S,. Observing the figure, let; , Iz, andg, be the images taken
by the left camera with light sources;,, F, and Fg,, respectively. The width of; and .S,
can be determined by applying the meanshift segmentatgmitiim in the ratio image% and
% (as described in section IV-A). We then determine the hethaded region by averaging the
shadowed regionss = ﬁ(s& + S5), where B, By, and B, are the baselines of the camera
and each light source, as shown in the figure.

The occluded region is determined with precision for plasteadowed region and with close
approximation for non-planar shadowed region. In the nlamgr case, the linear relationship
between baseline and shadow width does not hold, but thehesigthe occluded region is
guaranteed to be bounded by the shadows.

We used two Canon G3 cameras with light sources arrangedgaseF8 to test our half-
occlusion detection algorithm. Figure 9 demonstratesehatle performance of our method. The
images contain occlusion points in both textured and tektss regions, which is a challenging
problem for passive algorithms that rely on pixel corregforce. For quantitative evaluation, we

selected a piecewise planar scene (Figure 9a-c), sincedsier to obtain the occlusion ground
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Fig. 8. The length of the half-occluded regighis bounded by shadows; and S: created by flashes surrounding the other
camera

truth (computed from the known disparity map). For this s;evur method report8.65% of
false positives an@.12% of false negatives. The false positives rate is given by tmaber of
false alarm occluded pixels divided by the total number deded occluded pixels. The false
negative rate is given by the number of false negative oeclyzxels divided by the number of
ground truth occluded pixels. For very large depth diffeeshour method may not give a precise
estimation (for non-planar shadowed regions, due to labgemmded regions) and it might fail

due to detached shadows with thin objects.

VI. ENHANCED STEREO MATCHING

In this section, we use our feature maps as prior informatenhance stereo matching
algorithms. We start by demonstrating an enhanced windased, local stereo method that
takes advantage of depth edges and occlusions to prodysarithismaps with very few com-
putations and much more accuracy than traditional corogldiased methods. Then, we show
how to incorporate our feature maps into global stereo nustlmsed on Markov random field

optimization. We also analyse different stereo implemigonasetups and scenes with specular
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(b)

G

Fig. 9. Detection of binocular half-occlusions in both textureddaextureless regions. (a)-(b) Images taken with light sesr
surrounding the other camera. (c) Our occlusion detectiesuit marked as white pixel8.65% false positives an@.12% false
negatives were reported. (d) Left view. (e) Right view. @lGsion detection (white pixels)

reflections. Finally, we discuss limitations of our techreégand compare with previous 3D

reconstruction approaches.

A. Enhanced Local Stereo

A major challenge in local stereo is to produce accuratelteesear depth discontinuities. In
such regions, the main assumption of local methods is wdlahe same window (aggregation
support) contains pixels that significantly differ in digpg often causing serious errors in
the matching process, due to perspective distortions. thtiad, windows that include half-
occluded points near depth discontinuities are anotherceonf error, since they do not have
correspondence in the other view.

The central problem of local methods is to determine thenugitisize, shape, and weight
distribution of the aggregation support for each pixel.rehe a trade-off in choosing the window
size: if the window is too small, a wrong match might be foung do ambiguities and noise. If
the window is too large, problems due to foreshortening apttddiscontinuities occur, with the
result of lost detail and blurring of object boundaries.vitres solutions to this problem include
the use of adaptive windows [12] and shiftable windows [b8], producing clean results around

depth discontinuities still remains a challenge.
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1) Varying Window Size and Shap®#/e adopt a sliding window which varies in shape and
size, according to depth edges and occlusion, to perfora warrelation. Given the quality of
the detection of depth edges and half-occluded points|tseare significantly improved.

In order to determine the size and shape of the window for @ad, we determine the set
of pixels that has aproximately the same disparity as théecqixel of the window. This is
achieved by a region growing algorithm (starting at the eempixel) which uses depth edges
and half-occluded points as boundaries.

Only this set of pixels is then used for matching in the othiesw The other pixels in the
window are not considered, since they correspond to a diftedisparity.

2) Experiments:We first demonstrate the usefulness of depth edges in loestcstusing
the 640x480 Tsukuba stereo pair of the Middlebury dataggt:(lwww.middlebury.edu/stereo).
Figure 10a shows one of the stereo input images. The digpgnatund truth for each pixel is
shown in Figure 10b and the depth edge map computed from tumdrtruth is shown in Figure
10c. The results using a traditional correlation-basedréalyn are shown in Figure 10d for a
window size of 9x9 pixels and Figure 10e for a window size ok3Il pixels. The trade-off in
choosing the window size is clearly shown from these imagesmaller 9x9 window causes
noisy results, while a larger 31x31 window causes signifiearors near depth discontinuities. In
order to verify the importance of depth edges in local stewemused our algorithm considering
as input the stereo pair and the depth edge map computed frendisparity ground truth.
Figures 10f and 10g show our results for 9x9 and 31x31 windaess respectively. Clearly, the
disparity map results are significantly improved near depftontinuities. Note that this is a
synthetic example to illustrate the effect of depth dispuanties in stereo, since we are assuming
we have as input the depth edge map, which is difficult to abtathout active illumination.

Next we evaluate our method in a real scenario, using makhfimaging to compute depth
edges and occlusions. We used a horizontal slide bar forramgjstereo images with a multi-
flash camera. Occlusions were estimated by moving the flasiogerly to the shooting camera

positions.
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(@

Fig. 10. (a) One image of the stereo pair. (b). Disparity map groungthr (c) Depth edge map computed from the ground
truth. (d) Local correlation result with a 9x9 window. (e) ¢al correlation result with a 31x31 window. (f) Our enhandedal
stereo result with a 9x9 window. (g) Our enhanced local steesult with a 31x31 window

Figure 11a shows one of the views of a difficult scene we usadpag. The image contains
textureless regions, ambiguous patterns (e.g., the bagkdrclose to the book), a geometrically
complex object and thin structures. The resolution of thages is 640x480. We rectified them so
that epipolar lines are aligned with horizontal scanliigs.adopted a small baseline between the
cameras (maximum disparity equals 10), so that we can ohthiand-labeled disparity ground
truth (Figure 11b).

Figure 11c shows our computed depth edges and half-occlooiets. Note that some edges
do not appear in the ground truth (due to range resolutiod)ves also have some gaps in the
edges due to noise. This data was considered to test ounthfgerunder noisy conditions.

Traditional local-correlation approaches perform venonh in this scene, as we show in
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Fig. 11. Enhanced Local Steréa) Original image. (b) Hand-labeled ground truth. (c) Detien of depth edges and binocular
half-occlusions. (d) Local correlation result with a 9x9ndbw. (e) Local correlation result with a 31x31 window. (fuQnulti-
flash local stereo result with a 31x31 window. (g) Analysighaf root-mean-squared error with respect to window wizes Th
dashed line corresponds to traditional local correlatiomhile the solid line corresponds to our approach

Figures 11d and 11e, using windows of size 9x9 and 31x31. thtiad to noise, there are
major problems at depth discontinuities - corners tend twbe rounded and thin structures
often disappear or expand. In contrast, our method presBseentinuities with large windows
(Figure 11f). We show a quantitative analysis of the two radthwith respect to the window
size in Figure 11g. The axis of the graph correspond to themman-squared error (RMS) and
the window size in pixels. The error decreases significaadlyhe window grows for our method
(solid line). At some point, it will start growing again witlarger windows due to gaps in the

depth edges. We could use our qualitative depth map herehisutvould add an undesirable

computational load, since local-based approaches aagctatt because of their efficiency.
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B. Enhanced Global Stereo

The best results achieved in stereo matching thus far aendmwy global stereo methods,
particularly those based on belief propagation and graph[&@], [18]. These methods formulate
the stereo matching problem as a maximum a posteriori MalRawlom Field (MRF) problem.

In this section, we will describe our enhanced global stemethod, which uses belief propagation
for inference in the Markov network.

Some current approaches explicitly model occlusions ascbditinuities in the disparity com-
putation [35], [36], but they rely on intensity edges anddjiions as cues for depth discontinuities.
This poses a problem in low-contrast scenes and in imagesewdigect boundaries appear
blurred. However, we want to suppress smoothness cortstrainty at occluding edges, not at
texture or illumination edges. Our method makes use of ther pnformation to circumvent
these problems, including the qualitative depth map andatitematically detected binocular
half-occlusions described earlier.

1) Inference by Belief PropagationThe stereo matching problem can be formulated as a
MRF with hidden variablegz,}, corresponding to the disparity of each pixel, and observed
variables{y,}, corresponding to the matching cost (often based on irtiesiferences) at
specific disparities. By denotingd = {z;} andY = {y,}, the posteriorP(X|Y) can be

factorized as:

PX|Y) o [[ (@, ys) [T T stls. ze) (6)

s teN(s)

where N (s) represents a neighborhood©fy,; is called the compatibility matrix between nodes
xs andz; (Smoothness term), angtl (z,, ys) is called the local evidence for nodg, which is the
observation probability(y;|zs) (data term). The belief propagation algorithm gives an ieffic
approximate solution in this Markov network. We refer thader to [18] for details about the
derivation of equation (6) and the inference based on bphabagation.

2) Qualitative Depth as EvidenceWe can potentially use our computed depth edges to
suppress smoothness constraints during optimization.edery the depth contours may have

gaps. Fortunately, our qualitative depth image shows aaldsi slope in intensity when gaps
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Fig. 12. (a) Compatibility matrix encouraging pixels to have the sadiisparity. Larger rectangles correspond to larger values
(b) Compatibility matrix encouraging neighboring pixets have different disparities according to the qualitativepth map.
(c) Same as (b), but considering a different sign of the depiie so that the shift goes on the opposite direction

occur (as we will show in our experiments), and hence it is@gdhoice to set the compatibility
matrix 1. In addition, the qualitative depth map encodes the objettive distances via the
shadow width information, and we use the map to encouragewlisuities at a certain disparity
difference.

Consider{d;}, i = 1..L. to be the set of possible disparities for all pixels, whéreand d;,
correspond to the minimum and maximum allowed disparitiespectively. The compatibility
matrix ¢ (xs, x;) iS expressed as &z L matrix encoding the disparity relationship between
pixels s andt [18]. In fact, each entryi, j) in the compatibility matrixis, corresponds to the
likelihood of pixelss andt¢ having disparitiesi; and d;, respectively. This means that if the
matrix has higher values along its diagonal, neighboringlgiwill be encouraged to have the
same values, imposing a smoothness constraint, which ismcmiy adopted in stereo algorithms.

Let P be the qualitative depth scaled to match the set of possibpaudtiesd;, i = 1..L. We

define the compatibility matrix)y(z, z,) = C3.,, whereC;/ is defined as:

\d; — d; — APy|
F

Cs! = exp(— ) (7)

where A P,; is the intensity difference between pixel@ndt in the qualitative map (which was
scaled to match possible disparities) afds a constant scaling factor. Intuitively, £ P,; = 0,
there is no sharp discontinuity for neighboring pixeland¢ and the compatibility matrix will

have larger values along its diagonal (see Figure 12a),usaging neighboring pixels to have
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(@) (b)

Fig. 13. (a) Standard belief propagation result. (b) Our enhancedbgl stereo method, given the knowledge of depth
discontinuities

the same disparity. In contrast, £P,; # 0, the larger values will be shifted to the disparity
encoded byAP,; (see Figures 12b-c). The direction of this shift dependshensign of AP,
which is the sign of the corresponding depth edge.

We have also included the half-occlusion information in me&thod. Nodes corresponding to
pixels that have no match in the other view are eliminatedlendnpenalty is given for matching
a given pixel with an occluded point in the other view.

3) ExperimentsFigure 13 shows a comparison of our algorithm with tradaiogiobal stereo
based on belief propagation. As before, we used the inpujesi&rom the Middlebury dataset
with depth edges computed from the disparity map groundh.tfeor this example, we have not
used the information from occlusions and qualitative depté just used depth edges to stop
smoothness constraints in the energy function. As we cairegalts are considerably improved
near depth discontinuities.

The computed qualitative map in our challenging stereo @kans shown in Figure 14a. The
results for the standard belief propagation algorithm aond enhanced method are shown in
Figures 14b and 14c, respectively. The passive method tfaifgeserve discontinuities due to
matching ambiguities (we used the implementation avaelablhttp://cat.middlebury.edu/stereo/
with different weight and penalty parameters). Black mxelean noisy values (zero disparity).
Our results clearly show significant improvements with a RM3.4590 compared to 0.9589
for this input. It is important to note that (although we da sbow in this scene) our method

handles slanted surfaces in exactly the same way as staghidral methods. In other words,



SUBMITTED TO IEEE TRANS ON PAMI, 2006 24

Fig. 14. Enhanced Global Steréa) Qualitative depth map. (b) Standard passive belief pgapion result (RMS: 0.9589).
(c) Our enhanced global stereo method (RMS: 0.4590)

we do not sacrifice slanted surfaces to preserve discotiéawds opposed to [16].

C. Specular Scenes

Specularities pose a problem for stereo matching, singeateviewpoint dependent and can
cause large intensity differences at corresponding poWith multi-flash imaging, as shown in
our previous work [10], we can significantly reduce the dffgfcspecular reflections in images,
thus enhancing stereo correspondence near specular segion

We used the setup shown in Figure 2d to capture four image péia specular scene under
different lighting conditions. Figures 15a and 15b showstexeo pair (left view and right view,
respectively), captured with one single shot, using thd ffassitioned to the right of the camera.
Note how specularities are different in the two views.

Using the remaining flash images, we can attenuate the effesgecular reflections with our

gradient-domain method described in previous work [10]e Bpecular-reduced image pair is
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(e) | (f)
Fig. 15. (a) Left view of a flash image. (b) Right view of a flashagge. (c) Left view of our specular-reduced image. (d)
Right view of our specular-reduced image. (e) Disparity nf@pa region of interest using the flash image pair. (f) Digyar
map using the specular-reduced image pair.

shown in Figures 15c and 15d.

For stereo matching, we rectified the images and computeth d#lges as pre-processing.
Our enhanced local stereo matching was applied to both flaglsecular-reduced image pairs,
using a 31x31 search window. The disparity map results aosvistfor a region of interest
in Figures 15e and 15f. Note that we are able to reduce agifdge to specularities in the
disparity map. The artifacts near the handle of the cup aeetalypartial occlusions, which were
not detected and processed in this experiment.

Our method uses flash images to handle specularities. Thetaet and attenuation of specular
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reflections in ambient (no-flash) images has been recendseaded by Agrawal et al. [37], using
flash and no-flash image pairs. The advantage of using flasfpesnia that they are less noisy
and more appropriate for dark environments.

When specular boundaries overlap in most images, we arebh®tt@ remove specularities.

This is the reason why we still have some specular artifactsigure 15f.

D. Efficiency

Our qualitative depth map takes about two seconds to computa Pentium IV 1.8 GHz
for 640x480 resolution images. Our enhanced local-bass@atalgorithm requires very few
computations since depth edges can be computed extrerse[@faOur enhanced global method
computation time is the sum of the time for the qualitativpttienap computation plus the time
for belief propagation procedure. We refer to [38] for ancedint implementation of the belief

propagation algorithm.
VIl. DISCUSSION

In addition to the proposed methods described in the prevamction, signed depth edges
could also be used as part of the matching cost computatibis. Would be very useful in
low-contrast scenes, where occluding boundaries may noéesmond to intensity edges. The
disadvantage of matching depth edges is that problems may echen a depth discontinuity
in one view corresponds to a surface normal discontinuitthenother view.

Small baseline multi-flash illumination could be used to arme multiple view stereo algo-
rithms for 3D object modeling [39], [40], [41]. We refer toettwork of Crispell [42] along this
direction, which shows the importance of depth edges and-ffagh photography to reconstruct
objects with concavities. In our work, we applied our featamaps to aid the establishment of

point correspondences between two images acquired withrafamall baseline cameras.

A. Comparison with other techniques

Table | shows a comparison of our multi-flash stereopsisaggtr with other stereo methods.

Note that a small baseline flash setup means we do not needratiaty setup as in photometric
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. Handles Handles Compact Hardware
Active / '
E ?;?];/;riii Passi Constant Depth self- Complexity /

assive Albedo Discontinuities | contained Cost

Structured Light Depth Active Yes Yes Difficult More

Photometrio Normals Active Yes Limited No Less
Stereo

Helmholtz Depth+ Active Yes Limited No Less

Stereo Normals

Multi-Flash Depth Active No Yes Yes Less
Stereo

Passive Stereo Depth Passive No Limited Yes Less

TABLE |

Comparison of our technique with other 3D reconstructiomprapches.

stereo and the cost and complexity of a flash attachmentydeer In addition, for non-intrusive
applications, we can use readily available infra-red flagting, while projecting high frequency
structured patterns requires an infra-red projector.

Below we give a more detailed discussion of the pros and coonsromethod compared with
stereo techniques:

1) Passive StereoAs we showed in the previous section, our method signifigagrthances
the establishment of point correspondences near deptbrdisaities and specular highlights,
when compared to passive stereo methods. Both techniquiggailin large textureless regions.
Passive stereo methods are non-intrusive and more suf@bf@ocessing dynamic scenes. In
outdoor scenarios, when sun light has more intensity thah flght, we can not enhance passive
stereo matching.

2) Stereo Based on Structured LighActive stereo techniques based on structured lighting
produce more accurate correspondence maps than our app@ache other hand, our method
offers advantages in terms of low cost, simplicity, and gloitity. In addition, our feature maps

could be used to enhance structured light techniques. Ehate of the art 3D scanners may



SUBMITTED TO IEEE TRANS ON PAMI, 2006 28

(a) (b) ©

Fig. 16. (a) Original Photo. (b) Our depth edge confidence.rt@pDepth map from active illumination 3Q scanner. Note the
jagged edges.

produce jagged edges along depth discontinuities, as shrowigure 16.

3) Photometric StereoPhotometric stereo techniques require a fixed lighting nd &us
are limited to laboratory and industrial settings, corttraswith our method which can be built
into a self-contained camera. They produce excellent te$af smooth, Lambertian surfaces,
but are unstable near depth discontinuities or rapid senfermal changes [43]. They offer the
advantage of handling textureless regions and estimatirfgce reflectance properties.

4) Helmholtz StereoHelmholtz stereopsis has the ability to handle surfacek aibitrary
reflectance, in contrast to most previous methods that asdiambertian reflectance. It also
offers the advantage of estimating surface normals in teldss regions. In regions with texture,
both depth and normals are estimated. Similarly to photomstereo, light sources with large
baseline are assumed to allow sufficient photometric variacross reciprocal image pairs, so
that the normal field can be estimated. Hence, the setugfisullito be built into a self-contained
device. In addition, the camera and light source must béredéd and moved in a precise and
controlled fashion. Although the authors claim that shasloan be used in Helmholtz stereo as
a cue for detection of partial occlusions, no experimergsraported for obtaining discontinuity

preserving depth maps.

B. Limitations

Our approach has the following limitations:

« Although we significantly enhance passive stereo matcheay discontinuities and specu-
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larities, our method suffers from other well-known probtem passive matching, such as
handling textureless regions, noise, and non-Lambertigiace reflectance. Some of these
problems are addressed by active stereo approaches, asntiemad in the last section. Our
feature maps obtained with small baseline illuminationdde used to enhance these active
illumination stereo methods as well, as most of them areitbemaear depth discontinuities.

« Our method fails for outdoor scenarios when the sun’s ilhation is more intense than
the flashes. In this case, depth edges and occlusions care rigtécted and used as prior
information in stereo. For local stereo, our algorithm wbible equivalent to traditional
correlation-based approaches, since the window shapeizamaveuld keep constant along
the image. For global stereo, we would have to use intensiye® in addition to the
qualitative depth map to set smoothness constraints.

« When thin foreground objects are present in the scene, wehianay problems with detached
shadows that are separated from the object. In our previauk {#4], we have exploited
a multi-baseline approach (one camera with multiple flagte®ring multiple baselines)
to handle this issue. We believe that detached shadows @sitdbe used as a positive
source of information. For example, it could be used to hamdtlering constraintsin
stereo based on dynamic programming. In fact, the ordergsgraption is often violated
when thin foreground objects are present in the scene.

« Motion is another cause of failure in our approach, sincetiplelimages are taken sequen-
tially. Without proper image registration, our feature rmaan not be computed reliably. A
possible solution to this problem is the use of light souneéh variable wavelength [44],

which can be triggered at the same time to create shadowsdifiinent colors.

VIIl. CONCLUSIONS

We have presented a set of techniques based on active {igfinreliable, discontinuity
preserving stereo matching. Our methods include the derivaf a qualitative depth map from
one single camera, detection of binocular half-occlusiansi enhanced local and global stereo

algorithms based on these features.
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Our techniques are reliable, simple, and inexpensive; tlezatl setup can be built into a
self-contained device, no larger than existing 3D camdrathe future, we plan to extend our
multi-flash imaging framework to handle the general probleirclassification of discontinu-
ities according to their physical origin, i.e, discrimimaf discontinuities in depth, reflectance,

illumination and surface normal.

REFERENCES

[1] D. Scharstein and R. Szeliski. A taxonomy and evaluatibrdense two-frame stereo correspondence algorithms. In
International Journal of Computer Visipwolume 47(1), pages 7-42, 2002.

[2] M.Bell and W. Freeman. Learning local evidence for shgdand reflectance. Imternational Conference on Computer
Vision (ICCV’01) volume 1, pages 670-677, 2001.

[3] L. Zhang, B. Curless, and S. Seitz. Rapid shape acaquisitising color structured light and multi-pass dynamic
programming. Ininternational Symposium on 3D Data Processing Visual@atind Transmissigrpages 24-26, Padova,
Italy, 2002.

[4] J. Davis, D. Nehab, R. Ramamoothi, and S. Rusinkiewicpacstime stereo: a unifying framework for depth from
triangulation. IEEE Transactions on Pattern Analysis and Machine Intelige 27(2), 2005.

[5] T. Zickler, P. Belhumeur, and D. Kriegman. Helmholtzretpsis: Exploiting reciprocity for surface reconstranti In
European Conference on Computer Vision (ECCV,@2)02.

[6] A. Hertzmann and S. Seitz. Shape and materials by exampdotometric stereo approach. Gonference on Computer
Vision and Pattern Recognition (CVPR’Q3ages 533-540, Madison,Wisconsin, 2003.

[7] M. Daum and G. Dudek. On 3-D Surface Reconstruction uShgpe from Shadows. i@onference on Computer Vision
and Pattern Recognition (CVPR'98)ages 461-468, June 1998.

[8] R. Raskar, K. Tan, R. Feris, J. Yu, and M. Turk. A non-phesdistic camera: depth edge detection and stylized rérgler
using multi-flash imagingSIGGRAPH 2004 / ACM Transactions on Graphi2804.

[9] K. Tan, J. Kobler, P. Dietz, R. Feris, and R. Raskar. Skaiganced surgical visualizations and medical illustregiwith
multi-flash imaging. Ininternational Conference on Medical Imaging Computing @admputer Assisted Intervention
(MICCAI'04), France, 2004.

[10] R. Feris, R. Raskar, k. Tan, and M. Turk. Specular refdecteduction with multi-flash imaging. IhEEE Brazilian
Symposium on Computer Graphics and Image Processing (SABGHR), Curitiba, Brazil, 2004.

[11] R. Feris, M. Turk, R. Raskar, K. Tan, and G. Ohashi. Eitplg depth discontinuities for vision-based fingerspegli
recognition. INIEEE Workshop on Real-time Vision for Human-Computer bdgon (in conjunction with CVPR’'04)
Washington DC, USA, 2004.

[12] T. Kanade and M. Okutomi. A stereo matching algorithnthwan adaptive window: Theory and experimenEEE
Transactions on Pattern Analysis and Machine Intelligeri®(9):920-932, 1994.

[13] S. Kang, R. Szeliski, and J. Chai. Handling occlusiomgiénse multi-view stereo. I@onference on Computer Vision
and Pattern Recognition (CVPR’QIyolume 1, pages 102-110, 2001.

[14] P. Belhumeur and D. Mumford. A Bayesian treatment of stereo correspondence problem using half-occluded region
In Conference on Computer Vision and Pattern Recognition ®9P), pages 506-512, Champaign, lllinois, 1992.

[15] S. Intille and A. Bobick. Disparity-space images anmyéocclusion stereo. IBuropean Conference on Computer Vision
(ECCV’94) pages 179-186, 1994.

[16] S. Birchfield and C. Tomasi. Depth discontinuities bygbito-pixel stereo.International Journal of Computer Vision
35(3):269-293, 1999.

[17] M. Tappen and W. Freeman. Comparison of graph cuts vatiebpropagation for stereo, using identical MRF paramsete
In International Conference on Computer Vision (ICCV'0Rjce, France, 2003.

[18] J. Sun, N. Zheng, and H. Shum. Stereo matching usingfopiopagation.lEEE Transactions on Pattern Analysis and
Machine Intelligence25(07):787-800, 2003.

[19] V. Kolmogorov and R. Zabih. Computing visual corresgence with occlusions using graph cuts. lfrternational
Conference on Computer Vision (ICCV’'QMancouver, Canada, 2001.

[20] J. Sun, S. Kang, and H. Shum. Symetric stereo matchingdolusion handling. IrConference on Computer Vision and
Pattern Recognition (CVPR'055an Diego, California, 2005.

[21] J. Salvi, J. Pages, and J. Batlle. Pattern codificatitategjies in structured light systenfattern Recognition37(4):827—
849, 2004.

[22] D. Scharstein and R. Szeliski. High-accuracy sterqutdenaps using structured light. onference on Computer Vision
and Pattern Recognition (CVPR’Q3)ages 195-202, Madison,Wisconsin, 2003.



SUBMITTED TO IEEE TRANS ON PAMI, 2006 31

(23]

[24]
[25]

[26]
[27]
(28]
[29]

[30]
[31]

[32]
[33]
[34]
[35]
[36]
137]
[38]
[39]
[40]

[41]
[42]

[43]

[44]

J. Posdamer and M. Altschuler. Surface measuremenpagesencoded projected beam syste@mmputer Graphics and
Image Processingl8(1):1-17, 1982.

E. Horn and N. Kiryati. Toward optimal structured lighatterns.Image and Vision Computind.7(2):87-97, 1999.

J. Tajima and M. lwakawa. 3D data acquisition by raintrange finder. Innternational Conference on Pattern Recognition
pages 309-313, 1990.

L. Zhang, N. Snavely, B. Curless, and S. Seitz. Spaceetiaces: High-resolution capture for modeling and aninmatio
SIGGRAPH 2004 / ACM Transactions on Graphi2e04.

R. Woodham. Photometric method for determining sw@facientation from multiple images.Optical Engineering
19(1):139-144, 1980.

S. Savarese, H. Rushmeier, F. Bernardini, and P. Pe®madow carving. Iinternational Conference on Computer Vision
(ICCV'01), Vancouver, Canada, 2001.

J. Bouguet and P. Perona. 3D photography on your deskntémnational Conference on Computer Vision (ICCV’'98)
Bombay, India, 1998.

D. Yang. Shape from darkness under errdPhD thesis, Columbia University, 1996.

D. Kriegman and P. Belhumeur. What shadows reveal abbjgct structure Journal of the Optical Society of America
pages 1804-1813, 2001.

C. Christoudias, B. Georgescu, and Peter Meer. Sysrargn low level vision. Ininternational Conference on Pattern
Recognition Quebec City, Canada, 2002.

R. Fattal, D. Lischinski, and M. Werman. Gradient domhigh dynamic range compression. $hGGRAPH 2002 / ACM
Transactions on Graphi¢2002.

G. Egnal and R. Wildes. Detecting binocular half-osituns: Empirical comparisons of five approach&EE Transactions
on Pattern Analysis and Machine Intelligen@4(8):1127-1133, 2002.

M. Agrawal and L. Davis. Window-based, discontinuityeperving stereo. I€onference on Computer Vision and Pattern
Recognition (CVPR’04)Washington, DC, 2004.

H. Ishikawa and D. Geiger. Occlusions, discontingitiand epipolar lines in stereo. Buropean Conference on Computer
Vision (ECCV’98) June 1998.

A. Agrawal, R. Raskar, S. Nayar, and Y. Li. Removing gigsaphy artifacts using gradient projection and flash-exp®
sampling. SIGGRAPH 2005 / ACM Transactions on Graphi2605.

P. Felzenszwalb and D. Huttenlocher. Efficient beliefgagation for early vision. Il€onference on Computer Vision and
Pattern Recognition (CVPR’04P004.

W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. Mitdh. Image-based visual hulls. roceedings of SIGGRAPH
200Q pages 369-374, New Orleans, LA, 2000.

S. Seitz, B. Curless, J. Diebel, D. Scharstein, and ReliSid. A comparison and evaluation of multi-view stereo
reconstruction algorithms. IG@onference on Computer Vision and Pattern Recognition [&U€), New York, NY, 2006.
R. Cipolla and P. GiblinVisual Motion of Curves and Surface€ambridge University Press, 2000.

D. Crispell, D. Lanman, P. Sibley, Y. Zhao, and G. TaubBeyond sillhouettes: Surface reconstruction using rilath
photography. Innternational Symposium on 3D Data Processing, Visualiraand Transmissign2006.

|. Sato, Y. Sato, and K. lkeuchi. Stability issues inaeering illumination distribution from brightness in sluads. In
Conference on Computer Vision and Pattern Recognition ®9P), pages 400-407, 2001.

R. Feris, M. Turk, and R. Raskar. Dealing with multi-gcdepth changes and motion in depth edge detectionEEE
Brazilian Symposium on Computer Graphics and Image Praug4SIBGRAPI'06) Manaus, Brazil, 2006.



