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Abstract Recent advances in fast light transport acquisi-
tion have motivated new applications for forward and in-
verse light transport. While forward light transport enables
image relighting, inverse light transport provides new possi-
bilities for analyzing and cancelling interreflections, to en-
able applications like projector radiometric compensation
and light bounce separation. With known scene geometry
and diffuse reflectance, inverse light transport can be eas-
ily derived in closed form. However, with unknown scene
geometry and reflectance properties, we must acquire and
invert the scene’s light transport matrix to undo the effects
of global illumination. For many photometric setups such as
that of a projector-camera system, the light transport matrix
often has a size of 10° x 103 or larger. Direct matrix in-
version is accurate but impractical computationally at these
resolutions.

In this work, we explore a theoretical analysis of in-
verse light transport, relating it to its forward counterpart,
expressed in the form of the rendering equation. It is well
known that forward light transport has a Neumann series
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that corresponds to adding bounces of light. In this paper,
we show the existence of a similar inverse series, that zeroes
out the corresponding physical bounces of light. We refer
to this series solution as stratified light transport inversion,
since truncating to a certain number of terms corresponds
to cancelling the corresponding interreflection bounces. The
framework of stratified inversion is general and may provide
insight for other problems in light transport and beyond, that
involve large-size matrix inversion. It is also efficient, re-
quiring only sparse matrix-matrix multiplications. Our prac-
tical application is to radiometric compensation, where we
seek to project patterns onto real-world surfaces, undoing
the effects of global illumination. We use stratified light
transport inversion to efficiently invert the acquired light
transport matrix for a static scene, after which interreflec-
tion cancellation is a simple matrix-vector multiplication to
compensate the input image for projection.

Keywords Inverse light transport - Projector radiometric
compensation - Matrix inversion - Inter-reflection
cancellation - Rendering equation

1 Introduction

Global illumination and interreflection effects are impor-
tant aspects of real-world scenes. For forward light trans-
port simulation, a theoretical foundation in terms of the ren-
dering equation by Kajiya (1986) is now well established.
More recently, it has become possible to directly acquire
the light transport for a real scene, that in essence physi-
cally computes the rendering equation for different lighting
conditions. Forward light transport can be viewed as a lin-
ear operator that maps a lighting configuration to an image
sensor. For instance, in a projector-camera system, the light
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transport maps a projector input to a camera output. Recent
approaches have enabled great efficiency and generality in
light transport acquisition as shown in Debevec et al. (2000),
Sen et al. (2005), Ding et al. (2009), Peers et al. (2009) and
Wang et al. (2009). Even for purely synthetic scenes, pre-
computed light transport is now popular for rendering as
shown in Ramamoorthi (2007).

Acquired or precomputed light transport matrices have
so far been used primarily for relighting, that mathemati-
cally now becomes a simple matrix-vector multiplication.
However, there is also a large class of applications en-
abled by inverse light transport. One possibility, studied
by Seitz et al. (2005), is stratifying the image into the dif-
ferent bounces of light (direct lighting, first interreflection
bounce and so on). In this paper, we use projector radio-
metric compensation as the motivating application (Habe
et al. 2007; Wetzstein and Bimber 2007; Ding et al. 2009;
Ng et al. 2009). Our goal is to project images and patterns
from the projector onto uncalibrated real-world scenes with
unknown geometry and complex reflectance properties. In
these cases, the observed image includes interreflection ef-
fects, that we seek to compensate to obtain the desired re-
sult. If we could invert the light transport matrix, we can
compensate the input, so that the observed image upon pro-
jection matches the desired image. However, even the low-
est resolutions of real-world cameras and projectors usu-
ally cause the light transport matrix to be of size at least
103 x 10°—that makes direct matrix inversion computation-
ally intractable.

While forward light transport has been well studied, lit-
tle is known about the theoretical and computational struc-
ture and properties of inverse light transport. Furthermore,
while it is widely known that forward light transport can be
incrementally computed by adding light bounces through a
Neumann series, it remains unknown if such an incremen-
tal computation has a counterpart for inverse light transport.
In this paper, we address these fundamental questions, iden-
tifying a structure of the inverse light transport derived di-
rectly from the rendering equation, which mirrors that of
its forward counterpart. We show that inverse light transport
can be expressed in a polynomial series similar to the for-
ward Neumann series, and that each term or iteration zeroes
out the corresponding physical light bounce. Such a series
expression presents a natural structure for the inverse light
transport to be computed iteratively, which gives rise to a
stratified inversion algorithm.

In practical terms, stratified inverses enable projector ra-
diometric compensation at moderate to high scene resolu-
tions, once the light transport of a static scene has been ac-
quired and without assuming known scene geometry. They
provide a natural framework for gradual approximation of
inverse light transport, with only a small number of sparse
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matrix-matrix multiplications required. We demonstrate re-
sults (see Fig. 12) with image resolution of 384 x 512, re-
sulting in a light transport matrix of size 196608 x 196608.
The 4-bounce stratified inverse can be computed in under a
minute, while memory and computational issues make even
running a direct matrix inversion impossible on our hard-
ware at this resolution. We emphasize that the full light
transport matrix is inverted, that then allows a simple matrix-
vector multiplication to compensate each image that is pro-
jected, just like in (forward) image relighting. Bimber et al.
(2006) and Bimber (2006) explored a similar approxima-
tion framework for light transport inversion but under the
assumption of known scene geometry.

This paper is an extension of Ng et al. (2009) in the fol-
lowing aspects. First, we propose an insightful way to de-
rive the stratified inverse light transport directly from Ka-
jiya’s rendering equation. This derivation makes explicit the
connection between the iterative computation framework of
Bimber et al. (2006) and Bimber (2006) with known scene
geometry and the stratified inversion framework of Ng et
al. (2009) with only light transport measurement as input.
Second, we show a Neumann interpretation for the stratified
inverses in terms of physical bounces of light, which brings
out an interesting correspondence between the forward and
the inverse light transport (a brief summary of this result is
described by us in Bai et al. (2010), but this paper presents
the full derivation and analysis.) Although Seitz et al. (2005)
has showed that inverse light transport can be used for sep-
arating light bounces in forward light transport, the physical
meaning of the polynomial terms in inverse light transport
is novel. Third, we show that, by interpreting stratified in-
version in a numerical preconditioning framework, the ex-
act knowledge of the first-bounce light transport (which is
in general unknown) is not required for the convergence
of stratified inversion. Hence, for diffuse scenes, the first
bounce light transport can be computed using a result in
Seitz et al. (2005), by applying stratified inverse on the po-
tentially large-size light transport. With accurate estimation
of the first bounce light transport, stratified inverses corre-
spond to physical light bounces. We showed the accurate
estimation of a first bounce light transport in a simulation in
Sect. 5.1.

The paper is organized as follows. We start with a review
of previous work in Sect. 2. In Sect. 3, we go through the
basics of the rendering equation and forward light transport.
The main contribution of this work is described in Sect. 4
where the stratified inverse is derived from the rendering
equation and given a Neumann interpretation of bounce can-
cellation. In Sect. 5, we validate the computational frame-
work through a simple example. In Sect. 6, stratified inverses
are experimented with for a projector radiometric compen-
sation application on real scenes. Finally, we conclude and
discuss future work directions in Sect. 7.
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(a) A complex scene with an
array of hemispheres with an array of
hemi-spheres before

radiometric compensation

(b) Projector output on a surface (c) After radiometric compensation (d) After radiometric compensation
with the 1-bounce
stratified inverse

(e) The desired Image

with the 4-bounce
stratified inverse

Fig. 1 An illustration of radiometric compensation with stratified inverses on a complex scene with an array of hemispheres

2 Previous Work

We first discuss radiometric compensation, where most of
the previous work on computational methods for inverse
light transport has been developed. This will form our moti-
vating practical application. We then briefly review relevant
literature in light transport acquisition, global illumination
rendering for forward light transport, and inverse light trans-
port.

2.1 Radiometric Compensation

Radiometric compensation has a long history, with both geo-
metric and photometric distortions considered. In this paper,
we assume geometric calibration and focus on photometric
issues.

One to One Mapping with No Interreflections: Most early
work considered the mapping between projector and camera
to be one-to-one (Raskar et al. 1998; Majumder et al. 1999;
Nayar et al. 2003; Bimber et al. 2005; Fujii et al. 2005;
Ashdown et al. 2006; Song and Cham 2005). For a com-
prehensive survey, please refer to Yang et al. (2004) and
Raskar et al. (1999). Although the inversion of such a map-
ping is trivial, the one-to-one mapping can neither capture
the global illumination effects such as interreflection, refrac-
tion and scattering in the scene, nor compensate for them.

Iterative Methods for Each Input: For the case of known
scene geometry (and Lambertian reflectance), Bimber et al.
(2006) and Bimber (2006) showed that the light interreflec-
tion of a concave scene can be compensated by computing
the correct input to the projector iteratively. This is done us-
ing Jacobi iteration on the projector input vector, with the
form factor matrix derived from the scene geometry. In the
case of unknown scene geometry, but given the light trans-
port of the scene, we showed in Bai et al. (2010) that pro-
jector radiometric compensation can be similarly computed
iteratively. These approaches relate closely to the radiosity

method for diffuse global illumination in forward rendering
(Hanrahan et al. 1991; Gortler et al. 1993).

These iterative methods are effectively solving a lin-
ear equation without the need for direct matrix inversion—
hence they are more efficient when only a single image
needs to be compensated. However, for multiple images
or the case of displaying a video from a projector on a
static scene, the compensated projector input needs to be
separately and iteratively computed for every frame. This
can require considerable computation, which may preclude
real-time frame rates. While stratified inverses are also
conceptually similar as an iterative approach, our method
(pre)computes the full matrix inverse only once. Thereafter,
the compensated projector input can be obtained with a
single-step matrix-vector multiplication for any desired im-
age. In effect, we tradeoff more initial computation of a full
matrix inverse (that is still however very efficient, taking less
than a minute) for a very simple non-iterative compensation
method at run-time. Our formulation also derives directly
from the rendering equation, and the theory encompasses
general non-Lambertian materials.

Analytic Solution for Known Geometry: In fact, with a
known Lambertian form factor, Mukaigawa et al. (2006)
showed that the compensated projector input can be eas-
ily computed in closed form without iterative computation.
A similar conceptual observation was made by Seitz et al.
(2005). However, the assumption of known form factor is
not realistic except for the scenes derived from a graph-
ics model or ones with simple geometry and reflectance
which can easily be measured. Otherwise, it is more real-
istic to measure the light transport of a scene directly for a
projector-camera system.

Approximations to Full Inverse Light Transport: Projec-
tor radiometric compensation can be achieved through the
inverse light transport, which can only be computed by in-
verting the light transport matrix T as in Habe et al. (2007),
Wetzstein and Bimber (2007) and Ding et al. (2009). The
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real challenge for the matrix inversion is the enormous size
of a typical T, given the resolutions of projector and cam-
era. In order to produce T of a size feasible for matrix inver-
sion, Habe et al. (2007) downsized the full-size T through
grouping the neighboring projector pixels into single super-
pixels. However, the method only works well for a scene
with relatively simple geometry and texture of lower spatial
frequency.

Another approach is to sacrifice the fidelity of T by sim-
plifying the matrix without changing its size. Ding et al.
(2009) introduced a constraint known as the display con-
straint, such that a camera pixel can only receive light from a
single projector pixel. For T to comply with the display con-
straint, each row of T should only retain the largest element
by setting the other elements to zero. In this manner, the dis-
play constraint will make the resultant T column-orthogonal
and matrix inversion can be obtained through column-wise
computation. However, the interreflection effect in T is ef-
fectively removed, and this creates a discrepancy between
the actual light transport and the display constraint compli-
ant T. As a result, projector compensation using such a ma-
trix cannot remove any global illumination effect.

Wetzstein and Bimber (2007) simplified T by clustering
links between projector and camera pixels to form clusters
which correspond to independent sub-matrices. Matrix in-
version can be computed separately for each cluster and is
efficient if each individual cluster is of manageable size.
Naturally, independent clusters may not exist and some of
the links between projector and camera pixels often have
to be severed in order to produce clusters of manageable
size. This spatial clustering method effectively ignores in-
terreflections between clusters and reduces effectiveness of
projector compensation.

Comparison and Summary: Table 1 summarizes the prior
work in light-transport-based projector radiometric compen-
sation, including our own previous conference papers (Ng et
al. 2009; Bai et al. 2010). For known scene geometry and
known Lambertian reflectance, simple analytic approaches
are available as shown in Mukaigawa et al. (2006). How-
ever, for unknown scene geometry, such methods are not
possible. Fast iterative computation methods can be used in

Table 1 Comparison of prior works for inverse light transport

Bimber et al. (2006), Bimber (2006), O’ Toole and Kutulakos
(2010) and Bai et al. (2010), but must be rerun for each input
image. Moreover, many previous methods assume Lamber-
tian reflectance as in Mukaigawa et al. (2006), Bimber et al.
(2006) and Bimber (2006), while our formulation consid-
ers general materials and derives directly from the rendering
equation. Alternatively, simplifications can be made to en-
able full matrix inversion as in Habe et al. (2007), Ding et
al. (2009), Wetzstein and Bimber (2007). However, these ap-
proaches introduce approximations, and no principled anal-
ysis of error or convergence properties is available.

The contributions of this paper are primarily theoretical,
with an important practical advance for radiometric com-
pensation. Most importantly, we develop a principled the-
oretical analysis of inverse light transport. We build on the
seminal work of Seitz et al. (2005) but go much further in
exploring the relationships to forward rendering and the ren-
dering equation. In particular, we develop a stratified inverse
method, that cancels interreflection bounces in analogy to
the forward Neumann series that adds bounces of light. In
practical terms, this provides a principled and efficient way
to compute the full matrix inverse in a stratified fashion, us-
ing only sparse matrix-matrix multiplications. Once the in-
verse of the light transport matrix is computed, compensa-
tion is direct, with a simple matrix-vector multiplication (of
the inverse matrix and desired image).

2.2 Light Transport Acquisition

A large body of work over the last decade in computer
graphics and computer vision has dealt with acquiring light
transport matrices, indicating how a real scene responds to
light from all directions or projector pixels (Debevec et al.
2000; Sen et al. 2005; Ding et al. 2009; Peers et al. 2009;
Wang et al. 2009). While in this paper we focus on real
scenes, the use of precomputed transport is increasingly
common even for synthetic scenes, in applications like real-
time relighting (Ng et al. 2003).

There are many existing methods to acquire transport of a
scene. The brute-force method turns on the projector pixels
one by one while the response of each projector pixel is cap-
tured by a camera, and forms a column in T. This method

Analytic formula Iterative computation

Matrix simplification

Matrix stratification Theoretical analysis

Known Bimber et al. (2006)

Scene Mukaigawa et al. (2006) Bimber (2006)

Geometry

Unknown O’Toole and Kutulakos (2010) Habe et al. (2007)
Scene - Bai et al. (2010)

Geometry

Wetzstein and Bimber (2007) Ng et al. (2009)
Ding et al. (2009)

This work This work
Seitz et al. (2005)

Bai et al. (2010)
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produces an accurate T but it is time consuming and storage
intensive as the number of images that need to be acquired
is equivalent to the number of projector pixels. In Sen et
al. (2005), a multi-resolution and adaptive method was pro-
posed to measure the transport. In Peers et al. (2009) and
Sen and Darabi (2009), a compressive sensing approach was
proposed to exploit sparsity in T, and compute the response
of each pixel by projecting patterned illumination. A fast
method in Wang et al. (2009) was introduced recently to take
advantage of the coherency in the rows and columns of T,
given a specific hardware setup to capture images from the
projector viewpoints. In Ding et al. (2009) and Masselus et
al. (2003), a deterministic stripe-scanning method was pro-
posed to acquire T where horizontal and vertical stripes scan
through the scene in a sequential manner. This method is ef-
ficient and simple, but it tends to consistently over-estimate
the projector pixel response. For a comprehensive review of
light transport acquisition, we refer readers to Peers et al.
(2009) and Wang et al. (2009).

In this paper, we simply use these methods to acquire the
original light transport, as our main focus is on light trans-
port inversion.

2.3 Global Illumination Rendering

Much of our inspiration draws from the thorough study in
computer graphics of the forward problem, or global illu-
mination rendering. In particular, our stratified inverse light
transport is derived directly from Kajiya’s rendering equa-
tion (Kajiya 1986) using the operator notation in Arvo et
al. (1994). While we currently simply use sparse matrices
to represent T, we are also interested in exploring connec-
tions with hierarchical and wavelet radiosity as in Hanrahan
et al. (1991) and Gortler et al. (1993) in future; our stratified
matrix inversion also bears some conceptual similarities to
Jacobi and Gauss-Seidel iterative methods used in radiosity.

2.4 Inverse Light Transport

Previous work on inverse rendering has considered inversion
of the direct reflection equation to acquire lighting and re-
flectance properties as in Marschner (1998) and Ramamoor-
thi and Hanrahan (2001). Yu et al. (1999) developed an
inverse global illumination method for BRDF estimation.
However, all these methods assume the scene geometry is
known, and usually work with lower resolutions for light-
ing, which makes analysis of interreflections much easier
(and often requires only a few input images). In contrast,
our setup is closer to Seitz et al. (2005), where only the light
transport matrix is observed—both geometry and reflectance
are unknown, and are not explicitly estimated.

Given an inverse light transport matrix, the input illumi-
nation that produces a given photo of a scene can be com-
puted. O’Toole and Kutulakos (2010) showed that the input

illumination can be computed optically without explicitly
measuring the light transport. By simulating matrix-vector
multiplication optically, the algorithm in O’Toole and Kutu-
lakos (2010) implicitly solves a linear problem to produce
a solution vector through iterative optical measurements. In
this work, we are interested in computing an inverse light
transport matrix explicitly instead of just computing the so-
lution vector for an inverse problem.

While not focused on inverse light transport per se, the
fast separation of direct and global components by Nayar
et al. (20006) is also relevant. In theory, by just projecting
a high-frequency checker-board pattern and its complement
onto the scene, the direct reflection image can be extracted.
In practice, due to the resolution limits imposed by the pro-
jector and the camera, 25 images were used in Nayar et al.
(2006). This method has been used primarily for separating
a single image (rather than the full transport matrix) into
its components, and is suitable when T is unknown. The
method also assumes that the global illumination component
is low-frequency, which can be violated in cases of strong
localized subsurface or reflection effects.

3 Forward Light Transport

We now introduce the basic formulation of the rendering
equation and operator solution for forward light transport
and global illumination. Then, in Sect. 4, we proceed to de-
velop our theoretical formulation of stratified inverse light
transport.

The rendering equation (Kajiya 1986) can be written,

Lout(X, @) = L. (X, @)

cos 0; cosf,
Yy
lIx —ylI?

ey

where Loy (X, @) is the reflected or outgoing radiance, L,
is the emission corresponding to light sources, p is the Bi-
directional Reflectance Distribution Function (BRDF) of the
scene surface, and V is the binary visibility function. The
variables X, ®j, @, are respectively the spatial location, in-
cident and outgoing angles on a surface. The visibility func-
tion V(x,y) is 1 if x and y are connected by a line of sight,
0 otherwise. The integral is over the area M of all scene sur-
faces, and weighted by a purely geometric factor involving
cosines of incident and outgoing angles, and the distance be-
tween x and y.

+ / P (X, @, @) Lout (¥, —@i) V(X,y)
M

3.1 Operator Solution of Rendering Equation

Following Arvo et al. (1994), the rendering equation can be
written in operator notation (or equivalently in a discrete ma-
trix form) as,

lout = ld + KGlOllta (2)
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where loye is a vector of Loy(X, @), lg is a vector of
L.(X, o), G is a purely geometric operator that takes outgo-
ing or reflected radiance and propagates it within the scene
to obtain incident radiance, and K is a local linear reflec-
tion operator that takes incident radiance and turns it into
reflected light based on the BRDF of the surface p. Note that
in operator form as in (2), the formulation holds for general
materials, and is not limited to Lambertian surfaces or the
radiosity formulation. From (2), we can obtain

low =T —A)"'ly, where A =KG. (3)

3.2 Adaptation for Projector-Camera Systems

As opposed to the conventional global illumination formula-
tion, we do not have emissive surfaces per se, but emission is
induced by projection onto the scene. Assuming the camera
does not see the projector directly, we can replace 1y with the
effective emission, that corresponds to the direct reflection
from the projector,

lg =Flij, )

where li, is the incident lighting from the projector, and F is
the light transport matrix that corresponds to the first-bounce
reflection. Hence, we have,

lowt = (I — A) "' Fly,. ®)

Note that (5) is in the same canonical form as the for-
ward light transport equation loy; = Tlip, with T now being
defined as

T=0-A)"'F. (6)
By defining
S=I—-A)"", @)

we can write T = SF and l,,; = Sly. It is well known that the
expression S = (I — A)~! can be expanded in a Neumann
series as corresponding intuitively to increasing numbers of
bounces of light or interreflections,

S=I+A+AZ+A ..., )

4 Theory

In this section, we will present the main results of our paper.
We first derive the Neumann series for inverse light trans-
port, analogous to (8). We then derive the stratified inverse
method, and a physical interpretation of the Neumann se-
ries as cancelling the corresponding interreflection bounces
of light. We also relate our analysis to numerical techniques
based on preconditioning.

@ Springer

4.1 Neumann Series for Inverse Light Transport

Our goal is now to derive an expression for the inverse
light transport matrix, T~!. To do so, it will first be con-
venient to define another linear operator or matrix R that
accounts only for global illumination or the global compo-
nent lg,

louwe =la +1g =1d + Rlg = I+ R)lq. ©))

From l,y; = Slg, we can write S =1+ R and expand S-!
in a Neumann series as

ST!'=I+R '=I-R+R*—R*+---. (10)

We can now rewrite (10) simply in terms of T and F by
substituting R=8 —I=TF~! —1

ST =) (-Rf=) a-TFH, (1
k=0 k=0

where (—=R)? =1.
Finally, from T = SF, we can write the inverse light
transport T~ as

o0
T'=F'S"'=F"') a-TF ", (12)
k=0

which will converge if |[I — TF~!| < 1.

Note that one way to satisfy the above convergence con-
dition is to have a diagonally dominant light transport with
limited scattering so that TF~! is close to I. Light transports
from focused light sources such as a projector are likely to
be diagonally dominant. However, light transport from dif-
fuse light sources such as a display monitor will likely not
be diagonally dominant. On the other hand, the first-bounce
transport F is easily invertible from a source like a projec-
tor, while this is not the case for Lambertian reflection from
a diffuse light source (Ramamoorthi and Hanrahan 2001).
Therefore, computing the term TF~! in (12) can be difficult
under diffuse light sources.

4.2 Stratified Inverses

From (12), we can define a series of approximations to T~!
by dropping the higher-order terms one by one. We call these
approximations the stratified inverse light transport of the
scene and denote them as T, !,

T,'=F') a-TFH 13)
k=0
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We now derive further insights using the binomial theo-
rem to expand in terms of TF~!. In particular,

T, ! =F! i(i <];>>(—TF_1)I

=0 \k=I
I (n+1 _
=F IZ(H_l)(—TF h (14)
=0

where the last line uses a well known combinatorial summa-
tion identity. This clearly shows that the stratified inverse is
a polynomial in terms of TF~!.

4.3 Physical Interpretation: Inverse Neumann Series as
Cancelling Physical Bounces of Light

So far, we have introduced the stratified inverse, that is the
inverse analog to the forward Neumann series. However,
while the forward Neumann series corresponds physically
to adding bounces of light, it is not clear what physical in-
terpretation the inverse Neumann series has. We will now
derive a perhaps surprising result—just as each term in the
forward series adds a physical bounce of light, each term in
the inverse series cancels the corresponding bounce. How-
ever, convergence is oscillatory in the inverse series, owing
to the alternating negative and positive signs in (10). Be-
cause of this, coefficients of higher bounces will oscillate
until they are zeroed by the corresponding term in the in-
verse series.

We start with the basic relations of (7) and (10), that
S=I-A)'andS'=T+R)!,

R=A+A24+...=AT—A)"". (15)
Now, from (15) above, we can derive a series,
o0 o
s =Y (DR =Y (D aa-A) 1 (16)
k=0 k=0

While in general, raising a matrix (or operator) product to
a power is complicated because of non-commutativity, in
our case everything involves powers of A, and so A and
(I — A)~! commute, and can be exponentiated separately.
We can now put this together to derive,

S, =) (—DfAfa - (17)
k=0

4.3.1 Binomial Series Expansion

Using a standard binomial series expansion for (I — A)~*,
this can be written as

—1_n _ Kok (k+HT=1Y)
S; _k;)( 1)Al§< . )A. (18)

Our next step is to combine the powers of A, using that
m=I[+kandl=m—k,

n o
-1 __ k(M — 1 m
S, _ZZ(—I) <m_k>A ) (19)
k=0 m=k
It will simplify the later analysis if we treat k = 0 as a special

case, given obviously from (17) as the identity. We also use
(m —1) — (m — k) = (k — 1) in the combination,

s :I+ZZ(—1)"('Z__11>AM. (20)

k=1m=k

To proceed further, we need to transpose the order of the
summations. The outer summation should be about m,
which controls the powers. It is clear that we require m > k,
which in turn leads to the relations k < m and (because we
are considering the n term inverse series) that k < n,

0o [min(m,n)
s;1=1+2[ 3 (—1)"(’;1__11)};'". Q1)
m=1

k=1

4.3.2 Base Cases

We treat the simple cases when n = 0,1 and m = 1 first.
When n = 0, the expression above just reduces to the iden-
tity (no bounce is cancelled as expected). When n = 1, only
the k = 1 term is relevant, so we have

oo
S;'=1-) A", 22)
m=1

where we note that for k = 1, the k — 1 term in the combi-
nation reduces it to 1, and (—1)f = —1. This is indeed the
expected result, since Sfl =1— R, and we know from (15)
that R=A +A%+....

Finally, the special case m = 1 will be useful. In this case
(assuming n > 1), the second summation in (21) will have
upper limit m = 1, and the coefficient will simply be 1. Thus,
for n > 1 (the cases n = 0 and n = 1 have already been dealt
with),

oo ['min(m,n)
-1 _y_ _1\k m—1 m
S, =I A+mX=:2|: Y =D (k_1>i|A. (23)

k=1

4.3.3 Zeroing of Higher-Order Bounces

Now, consider the case when m < n. In this case, the second
summation has a limit of m > 1, and the coefficient of A”
becomes

m —1 m’ , /
Z<—1>"<Z_1)=—Z<—1>" (’Z,)=o, (24)
k=1 k'=0
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where m’ =m — 1 and k" = k — 1 (note this only works for
m > 1;the m = 1 term is given as a special case in (23)). The
expression above is clearly 0, since those are the coefficients
in a binomial expansion of the expression (1 + x)m/, with
x=—1.

This implies a key result, that the A™ terms vanish for
2 <m < n, which in turn implies that

S,'=I-A+0@A""), (25)

where O (-) denotes higher order terms, and n > 1. Note that
since S = (I — A)~!, the final result we desire' is simply
S—! =I—A. Equation (25) states that terms up to order n are
correct, and in fact terms from [A2 - - - A"] are 0. Note how-
ever that the terms (bounces) A"*! and higher oscillate and
are not zeroed until the corresponding inverse series term is
considered.

4.3.4 Bounce Cancellation

We have seen how higher-order terms are zeroed in the in-
verse operator series. We now show that applying the n-term
inverse series to the original cancels the first n bounces. For
this we write,

S,'S=[A-A)+ oA H]I-AT"". (26)

It is clear that the first part I — A creates the identity as de-
sired. The product O (A"t — A)~! is still of O(A"*!),
since the inverse can be expanded in a Neumann series.
Therefore,

S !IS=1+0A"™). (27)

In other words, the n-term inverse series annihilates bounces
[1...n], leaving only bounces n + 1 and higher.

4.3.5 Analytic Forms

In fact, the inner summation in (23) can be performed sym-
bolically (we did so using Mathematica), to derive

-1 n = m—2 m
S,'=T-A+ (D" ) LA™ (28)
m=n+1 n=
-1 n - m—1 m
S/S=I+D" o (7 )A" (29)
m=n+1

n fact, the analytic solution of Mukaigawa et al. (2006) essentially
uses this observation in cases where the form factors and hence A
are known. In our case, A is unknown, and recovering it is essentially
equivalent to inverting the light transport.
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Table 2 Coefficients of S; ! and S!S

S, ! I A A2 A AY AT A A7
Sy ! 1 0 0 0 0 0 0 0
s! T e T | -1 -1
S,! 1 -1 0 1 2 3 4 5
S;! 1 -1 0 o -1 -3 -6 —10
S;! 1 -1 0 0 0 1 4 10
s5! 1 -1 0 0 0 0o - -5
S;! 1 -1 0 0 0 0 0 1
s;! 1 -1 0 0 0 0 0
S, 's

S,'s 1 1 1 1 1 1 1 1
Si's 1 o -1 -2 -3 -4 -5 -6
S;'s 1 0 0 1 3 6 10 15
S$;'s 10 0 0 -1 —4 —10 =20
s;¢'s 10 0 0 0 1 5 15
ss's 10 0 0 0 0o -1 -6
S;'s 10 0 0 0 0 0

S7's 1 0 0 0 0 0 0 0

Note: The series, S, I and S, 1S, exhibit oscillatory convergence to-
wards I — A and I respectively. The n term series is accurate up to A",
and in fact cancels or zeroes bounces up to that order, with errors only
in higher-order terms or bounces n + 1 and higher

Table 2 shows coefficients of S, ! and S!S for (m,n) <7.
S, IS corresponds to radiometric compensation using strat-
ified inverses of order n. We can see the progressive disap-
pearance of the lower-order light bounces as n increases.
Figures 2 and 3 show what happens to the coefficients of
S, I and S, IS as we progressively perform stratified com-
pensation with increasing n. We can see that these coeffi-
cients of the light bounces oscillate until they are zeroed,

due to the (—1)" term in (28) and (29).

4.4 Interpretation as Numerical Preconditioner

We have so far derived the stratified inverse method from the
rendering equation, allowing us to give a physical interpre-
tation as cancelling interreflection bounces. We now briefly
also show how it can be related to a numerical inverse series
with preconditioners. This purely numerical interpretation
allows us to relax some conditions for practical implemen-
tation.

For any matrix T, if we can find a matrix (preconditioner)
P that is easy to invert, we can write

TP ! =1—1-TP ), (30)

from which it follows that

T '=p'd—a-1P ')~ L (31)
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Expanding this in a Neumann series, The numerical perspective offers two important practical
generalizations. First, we can use any matrix as a precondi-
-1 _ > 1k tioner, and need not exactly determine the first bounce trans-
T =P E I-Tp )", (32)

k=0

with the convergence condition ||I — TP~!|| < 1. Equa-
tion (12) can be viewed as a specialized case where, from
physical intuition, we take P =F or first bounce light trans-
port. Note that the physical bounce cancellation results just
explored require this physical perspective, and cannot be de-
rived for general Neumann series.

port F. We simply use a diagonal matrix P ~ F = diag(T).
Numerically, this is a Jacobi preconditioner. Physically, it
closely approximates the first bounce of light transport for
an appropriate parameterization that matches corresponding
elements of camera and projector (Seitz et al. 2005), since
those are the elements that are nonzero from direct lighting.
Moreover, an element does not reflect onto itself, so errors
will only be second order. While this is not the exact F, it
suffices numerically.
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In fact, since the convergence of stratified inverses does
not depend on the exact knowledge of the true F, it en-
ables us to compute the true F for diffuse scenes. Seitz et
al. (2005) showed that, for diffuse scenes, the true F can be
computed exactly provided the light transport matrix can be
accurately inverted, as

1

F.: = ,
NG B

(33)
where the subscript index in F;; indicates the diagonal ele-
ments of F. Such computation is demonstrated in a simple
simulation in Sect. 5. For a large-size light transport, strati-
fied inverses help to break the chicken and egg dependency
between the availability of the true F and the feasibility of
computing T~!. In addition, this also indicates that the phys-
ical interpretation of stratified inverses as cancelling inter-
reflection bounces as shown in the previous subsection can
be exactly computed for diffuse scenes.

Second, our theoretical framework applies to general
non-Lambertian materials, as does the rendering equation
from which it is derived. However, the operators do have
both spatial and directional dependence, that technically re-
quires us to consider the full light field or space of views. In
applying the theory to the common practical setup of a sin-
gle camera-projector pair, a widely used previous approach
is to assume Lambertian reflectance as in Seitz et al. (2005),
in which case the operators can be written without direc-
tional dependence. However, the numerical algorithm does
not need to make this assumption, even for a single camera-
projector pair, since the stratified matrix inversion method
still works. For the same reasons, our method is robust to
moderate amounts of subsurface scattering, even though the
rendering equation theory does not apply to volumetric ef-
fects. Our examples, such as the scene in Fig. 1, show both
moderate glossiness and subsurface scattering effects. We
emphasize that this is a practical issue only; the theory ap-
plies directly to general non-Lambertian materials.

5 Simulation

In this section, we evaluate the behavior of the stratified in-
verse in terms of its convergence properties and rate, as well
as its computational accuracy and efficiency versus the true
inverse.

5.1 Simple Example

To show the oscillatory convergence of the stratified inverse,
we perform a simulation on a 4 x 4 T matrix of a simple dif-
fuse dihedral scene as shown in Fig. 4(a). Each panel of the
dihedral is made up of two facets where the two facets on
the left panel subdivide the panel horizontally while the two
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on the right subdivide the panel vertically. Altogether there
are four facets in the entire scene. In this example, we sim-
ulate the case where the first-bounce light transport for all
the facets is equal to a value 1.750. Hence, the actual first-
bounce light transport F in this example is a diagonal matrix
with the diagonal entries being 1.750. On this example light
transport, we will compute the corresponding stratified in-
verses and evaluate the impact of our method in approximat-
ing F with the diagonal of T, as opposed to simply assuming
F =1, i.e., ignoring F in the computation.

The 4 x 4 T matrix from our four-facet scene with entries
rounded to four decimal places is given by:

1.7713 0.0213 0.1835 0.0675

T— 0.0213 1.7713 0.1835 0.0675 (34)
0.1835 0.1835 1.7875 0.0137
0.0675 0.0675 0.0137 1.7550

In this case, we can easily compute its true inverse and treat
it as the ground truth:

0.5715 0.0000 —0.0587 —0.0220
T-1— 0.0000  0.5715 —0.0587 —0.0220
~ | —0.0587 —0.0587 0.5715 0.0045
—0.0220 —-0.0220 0.0045 0.5715
(35)

As F is in general unknown given a T matrix, we approxi-
mate F with the diagonal of T:

1.7713 0.0000 0.0000 0.0000

o 0.0000 1.7713 0.0000 0.0000 (36)
0.0000 0.0000 1.7875 0.0000
0.0000 0.0000 0.0000 1.7550

Note that the estimated F is slightly different from the true F
with diagonal elements of 1.750. We will see that such dif-

(a) (b)

Fig. 4 Simulation scenes: (a) A Lambertian dihedral with two facets
on each of the two panels. The two facets on the left panel subdivide
the panel horizontally while the two on the right subdivide the panel
vertically. The dotted lines overlaid on the figure show the subdivision
for the facets. (b) An open Cornell box with 5 faces
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ferences do not affect the convergence of stratified inverses Results ona 4x 4T matrix
toward the true inverse. v O
The one-bounce stratified inverse can be easily computed v
as the inverse of F: _of * diagonals of T
[ Identity Matrix
0.5359 0.0000 0.0000 0.0000 % \ 7 TrueF
T — 0.0000 0.6120 0.0000 0.0000 37) mg 2 ) -
0 0.0000 0.0000 0.5594 0.0000 e} '
0.0000 0.0000 0.0000 0.5698 % d Q.
c
The stratified inverses for one to four indirect bounces are g -4 B
respectively computed as: g J
o L p3
0.5631 —0.0070 —0.0550 —0.0206 5 ’
T-' = —0.0070  0.5606 —0.0628 —0.0235 Z,'-J’ ” ) J . ‘
1 —0.0550 —0.0628 0.5594  0.0000 |’ - 2 3 4 5 6 7
—0.0206 —0.0235 0.0000  0.5698 bounces
(38) Fig. 5 Error analysis on a 4 x 4 T matrix for different choices of F
0.5707  0.0003 —0.0571 —-0.0214
T-! = 0.0003 0.5730  —-0.0568 —0.0213 perform physical light bounce separation as in Seitz et al.
2 —0.0571 —0.0568 0.5715  0.0045 |’ (2005).
—0.0214  —-0.0213  0.0045 0.5715 Stratified inverses with an order higher than four can be
(39) similarly evaluated. We show the convergence of the strat-
0.5713 —0.0002 —0.0586 —0.0220 ified inverses against the true inverse in Fig. 5, where the
. —0.0002 0.5711 —0.0589 —0.0220 error is measured by log||T,! — T~!||¢ the log Frobenius
T, = —0.0586 —0.0589 0.5711 0.0044 |- norm of the difference. For stratified inverses to have physi-
—0.0220 —0.0220 0.0044 05714 cal interpretation in terms of light bounces, the choice of F
(40)  has to be close to the true F. We can see that our approxi-
mated F in (36) is close to the true F, which is a diagonal
and matrix with diagonal elements of value 1.75 in this example.
Figure 5 also shows that the convergence curve for using the
0.5715  0.0001 —0.0586 —0.0220 true F and our choice of F are very close together. In general,
T = 0.0001  0.5715 —0.0586 —0.0220 we can also consider F as a preconditioner in our formula-
4 7| —0.0586 —0.0586 0.5715  0.0045 tion, where the choice of F can affect the convergence rate of
—0.0220 —0.0220 0.0045 0.5715 the stratified inverse. Naive options such as F = I, which is
(41) equivalent to ignoring the preconditioner, are not guaranteed

We can see that TZ] in (41) is very close to the ground
truth inverse in (35). For a diffuse scene, we can compute
the first-bounce light transport as

1
= —_1 N
(T4 i

F;;

(42)

that is by assigning the diagonal elements of F as the recip-
rocal of the corresponding diagonal elements of TZI. This
leads to

1.7498 0.0000 0.0000 0.0000

F— 0.0000 1.7498 0.0000 0.0000 43)
0.0000 0.0000 1.7498 0.0000 |’
0.0000 0.0000 0.0000 1.7498

which is very close to the true F. Once we have a good es-
timate for the true F (as compared to the initial F), we can

to work, as shown in Fig. 5.

Stratified inverses are only physically meaningful when
they are computed with the true F for a Lambertian scene. If
F is not close to the true F and one wants the full physical in-
terpretation for stratified inverses in terms of light bounces,
one could first recover the true F from stratified inverses us-
ing the approximated F and then re-run the iteration with the
true F.

5.2 Computational Time Comparison

To evaluate the computational efficiency of stratified in-
verses, we generate a 5120 x 5120 T matrix with a spar-
sity of 1.5% non-zero elements from an open Cornell box
as shown in Fig. 4(b). Computing the true inverse takes
65 seconds for this T matrix on Matlab running on a
64-bit machine with 2.67 GHz Intel processor and 8 GB
RAM. The computational time and accuracy measured with
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Fig. 6 Comparing the convergence of stratified inverses for two choices of F, i.e., F =1 and F being the diagonal of T, on a 5120 x 5120 T
matrix. Two different error metrics log;, ”Ti_l — T ! and logo ITT,; I'_ 1| p are used to measure the convergence in (a) and (b) respectively

log | T; -t || 7 for the first seven stratified inverse terms
are shown in Fig. 6(a). We observe that the stratified inverses
converge sharply when we choose F as the diagonal of T,
while convergence does not happen for F = I. Furthermore,
the computational time for T, ! is more than 8 times faster
than computing the true inverse.

Figure 6(a) and (b) indicate the compromise between
computational time and accuracy. The balance may depend
on the target application, where we may stop the computa-
tion when the stratified inverse hits a desired level of accu-
racy. The accuracy measure log;, ||Tl._1 — T~ || adopted
in Fig. 6(a) is not too useful as we may not know T~! in
practice. The error measure log;, ||TT;1 —I|| r as shown in
Fig. 6(b) offers a better alternative as it can be easily com-
puted given T without the need to compute T~!.

We note that very low resolutions were used in order to
make comparisons. It was not even possible to run the direct
matrix inversion (in terms of both computing time and mem-
ory) for the larger scenes shown in our results. Also note
that there is considerable sparsity in the light transport of
real scenes, and the stratified inverse computation therefore
just involves sparse matrix-matrix multiplication. In these
cases, the effective speedup of the stratified inverse method
is several orders of magnitude, enabling a full matrix inver-
sion.

6 Results

Having described the theory of the stratified inverse method,
we now turn to a demonstration of its practical utility. We
focus on radiometric compensation, which is one important
application of light transport inversion. For a static scene,
we can acquire the transport matrix T between projector
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(b)

Fig. 7 (a) The experimental setup and the concave wall corner scene.
(b) The super-pixel map on the camera image

and camera. This tells us how a particular projected image
will be affected by interreflections. To compensate the in-
put, and obtain the desired result, we must invert T, and
use this inverse to pre-multiply the projected image. The
challenge is inversion of the light transport matrix at rea-
sonable resolutions, and stratified inverses provide a prin-
cipled way to cancel a certain number of interreflection
bounces.

We begin by validating the method on a simple scene
with a single wall corner, and then showing results with
more complicated geometry and reflectance properties.

6.1 Validation with Simple Wall Corner

The first experimental scene is a concave wall corner as
shown in Fig. 7(a), which demonstrates significant light in-
terreflections between the two sides of the wall that join and
form a corner. Note that there would be no interreflection
if the wall corner was convex. The light interreflections are
also evident when an all white image is projected onto the
scene as shown in Fig. 8.

For our experimental setup, we used a Canon 450D cam-
era and a Dell 2400MP projector as shown in Fig. 7(a).
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Fig. 8 The projector output when projecting a constant-value image and three of its horizontal scan lines. The black-color horizontal is the mean

value of projector output

We linearized the system by first linearizing the camera re-
sponse using a Macbeth color checker and then lineariz-
ing the projector by projecting a sequence of grayscale im-
ages with increasing intensity. For simplicity, we consider
grayscale light transport where the projector and the cam-
era respectively project and capture grayscale images. As
a result, we do not need to model the color mixing matrix
between the projector and the camera. For accurate scene
measurement, we capture high dynamic range images of the
scene through a sequence of images with different expo-
sures.

For the first experiment, we focus on a small region cen-
tered at the wall corner, so that the corresponding T is of a
manageable size for direct matrix inversion. We group 4 x 4
projector pixels into a super-pixel and restrict the active re-
gion in the projector to be of dimensions 31 x 51 super-pixels
at the center. The corresponding super-pixel on the camera
is a group of camera pixels that a projector super-pixel has
the maximum response on. The intensity of a camera super-
pixel corresponds to the mean intensity of the camera pixels
in the group. The super-pixel map on the camera for the wall
corner scene is shown in Fig. 7(b). With this setting, T is a
square matrix of dimension 1938 x1938.

Besides constructing the super-pixel map, we extract
the region of the projector view which receives significant
amount of light under floodlit projection. The non-black
color region in Fig. 7(b) corresponds to the projector view
region.

We also perform a real radiometric compensation by pro-
jecting a non-negative image obtained by

lin = 4+ (T gesired), (44)

where the function f4(-) = max(-,0) truncates values to
0 since the projector cannot display negative values, and
lgesired 1 the image that we desire to see in the scene.

6.1.1 Data Acquisition

In this simple experiment, we choose the brute-force method
for light transport acquisition, as it gives us an accurate T.
After having acquired T, we evaluate its quality by com-
paring the image obtained by projecting a uniform inten-
sity image leonse With that generated by simulation using the
acquired T, i.e., by comparing with lgy = Tlcons. We plot
three horizontal scan lines from the respective images as
shown in Fig. 8. We can see that the scan lines coincide
nicely in shape, although the simulated scan lines look nois-
ier, which could be due to the hard grouping of super-pixels.
However, the similarity of the scan line graphs in shape indi-
cates that T is a sufficiently good model of the scene. Note
that the scan lines peak at the center region, which is due
to the significant light interreflections between the sides of
the wall that form an L shape. Overall, the scan lines are far
from being constant intensity, although a constant intensity
image is projected.

6.1.2 Stratified Inverse

For stratified inverse computation, we first extract the first-
bounce light transport matrix F from T as the diagonal of F.
Knowing both T and F, we can compute stratified inverses
using (14). We compute the stratified inverses of T up to
four light bounces (or four terms in the series) as well as
the inverse of T. In this case, we consider the inverse as

@ Springer



248

Int J Comput Vis (2012) 96:235-251

the ground-truth and compute the error of these stratified
inverses with respect to the ground truth in terms of root
mean squared error (RMSE).

Figure 9 shows how the error of stratified inverses de-
creases as the number of light bounces or terms increases.
We observe that the error becomes sufficiently low from two
light bounces onward.

6.1.3 Radiometric Compensation

Next, we evaluate the capability of stratified inverses for
projector radiometric compensation, where a desired image
is given as input and our algorithm will compute a corre-
sponding projector input that enables the desired image to

0.01 T T T T
0.009 fy - ‘ ‘ ‘ ‘
0.008 | -\

0.007 | -
0.006 | - -
0.005 | - -
0.004 | - -
0.003 | - -

0002 f - -

RMSE from the pseudo-inverse matrix

0.001 | - -

0 ) n
1 2 3 4 5 6
Number of light bounces

Fig. 9 The accuracy of stratified inverses with respect to the inverse
in terms of root mean squared error (RMSE)
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be seen at the camera viewpoint. In our experiment, we as-
sume that the input desired image and the image of compen-
sated projection are available from the camera viewpoint for
evaluation purposes. In real applications, the input desired
image is not available from the camera viewpoint, as it is
communicated to the camera or the human observer at the
camera viewpoint through the compensated projection. For
most daily scenes where radiometric compensation is ap-
plied, the pre-computed compensation is likely to be robust
to the slight deviation of the observer’s viewpoint from the
camera viewpoint.

In this experiment, we specify the desired image lgesjred to
be a uniform intensity image. Radiometric compensation is
expected to flatten the fluctuation shown in Fig. 8 as much as
possible, as it undoes the light interreflections in the scene.
We can easily simulate the effect of radiometric compensa-
tion as below

Lout = T £ (T gesired) == ldesired- (45)

The function f4(-) = max(-,0) truncates values to 0, since
the projector cannot display negative values. This step is
necessary to respect physical constraints. We will defer the
study of the truncation effect to future work.

The results are shown in Fig. 10(a). Note that the inten-
sity scale on the y-axis has been expanded in contrast to that
in Fig. 8. We note that the scan line compensated using the
4-bounce stratified inverse is quite close to the desired con-
stant intensity scan line. Visually, we also see that the scan
lines compensated using stratified inverses get closer to the
desired constant intensity scan line as the number of light
bounces goes up.

Figure 11 shows the inputs to the projector computed us-
ing 1-bounce and 4-bounce stratified inverses, and the direct

(b) Radiometric Compensation on Real Scene

04r -

0.05

Scanline Position

Fig. 10 Results for the case of a constant-value lesireq. (a) Horizontal scan lines for the simulated loy. (b) Horizontal scan lines for the captured
loue. For both (a) and (b), the number i on the scan lines indicates i-bounce stratified inverse. The black-color scan line is one for the true inverse
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Fig. 11 Results for the experiment where the desired image is a uni-
form intensity image. (Top row) The inputs to the projector for various
kinds of matrix inversion. (Middle row) The outputs observed by the
camera for various kinds of matrix inversion. We extract a scan line
from each of the outputs and show them in Fig. 10. (Bottom row) The
desired constant intensity image

inverse, as well as the corresponding outputs observed by the
camera. Note the projector inputs for the 4-bounce stratified
inverse and the direct inverse are similar. The black dots in
the projector inputs are due to the clipping function f, that
ensures the nonnegativity of the projector inputs. Also note
that scene interreflections are still visible in the case of the 1-
bounce stratified inverse, while the outputs for the 4-bounce
stratified inverse and the direct inverse are almost of uniform
intensity and close to the desired output.

We show the corresponding central horizontal scan lines
of the output image seen by the camera in Fig. 10(b). Com-
paring to the simulated results in Fig. 10(a), the intensity
fluctuation in Fig. 10(b) is slightly larger. We can measure
the fluctuation with the ratio of the scanline disparity (i.e.,
max—min) to the desired constant value. For the 4-bounce
scan line in Fig. 10(b), the fluctuation measure is about 0.3,
which is significantly smaller than that of the uncompen-
sated scan lines in Fig. 8 which is around 0.9. Similar to
the simulation, we also see that the scan lines in Fig. 10(b)
get closer to the desired constant intensity scan line as the
number of light bounces increases.

6.2 Complex Scenes with Moderate Glossiness
and Subsurface Scattering

To evaluate our method, we perform an experiment on a
complex scene of a surface tiled with an array of half sty-

rofoam balls with moderate glossiness and subsurface scat-
tering as shown in Fig. 1(a). The scene interreflections are
significant at the concave regions between the hemispheres,
and the output image before compensation is seriously dis-
torted both geometrically and radiometrically. For this com-
plex scene, we acquire a light transport matrix of slightly
higher resolution using a brute-force method with the pro-
jector having 92 x 116 super-pixels of dimension 4 x4 pixels.
In this case, T has a dimension of 10672 x 10672. Figure 1(e)
shows the complex desired image displayed in high resolu-
tion. Note that when there is no radiometric compensation
on the projector output, as shown in Fig. 1(b), interreflec-
tions are visible between the hemispheres which results in
the reduced contrast, and there is geometry distortion in the
image. After radiometric compensation with the 1-bounce
stratified inverse, the geometry distortion is in general re-
moved as shown in Fig. 1(c) (some slight local distortion in
the image is due the coarse super-pixel structure). We can
see that the scene interreflections are significantly reduced
after the 4-bounce compensation as shown in Fig. 1(d). The
compensation also rectifies the distortion observed in the un-
compensated image.

The light transport for complex scene is singular, due to
the significant light scattering. Computing the direct inverse
of this matrix in Matlab ran into an insufficient memory er-
ror after about an hour of computation. However, it takes
8 seconds to compute the 4-bounce stratified inverse. We
believe the few seconds of compute time to invert the full
T matrix is easily justifiable for a static scene, especially
considering the time for acquisition of the transport matrix.
New images can now be compensated with a simple matrix-
vector multiplication.

For the stratified inverse of this singular matrix to con-
verge, we strengthen its diagonal elements by adding oI to
T, where I is an identity matrix and « is a small value at
about 1 percent of the average of the diagonal elements of T.
Qualitatively, this heuristic produces reasonably radiometric
compensation results as shown in Fig. 1. We will look into
a principled way to handle singular light transport in future
work.

6.3 High-resolution Compensation

To assess our method for a high-resolution case, we acquire
a high-resolution light transport matrix with the projector
having 384 x512 super-pixels of dimension 2x?2 pixels for
the convex wall corner scene. For efficient light transport ac-
quisition which is generally expected in real applications, T
is acquired using an approximate method with stripe scan-
ning (Ding et al. 2009; Masselus et al. 2003), instead of the
brute-force method. Furthermore, we are also interested to
see how our method performs on an approximate light trans-
port.
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(a) Projector output on a wall corner
without radiometric compensation

(b) Projector output from the
1-bounce stratified inverse

Fig. 12 The high-resolution results for the wall corner scene. Subfig-
ures from (a) to (d) show increasing fidelity. The uncompensated pro-
jector output in (a) shows geometric distortion and scene interreflec-
tions. The projector output (b) by the 1-bounce stratified inverse is
compensated mainly in geometry. The projector output (¢) is compen-

In this case, T is a matrix with dimension of 196608
x196608. We specify a complex city-scene desired image
as shown in Fig. 12(a). Before radiometric compensation,
the output image appears to be distorted and has strong
scene interreflections as can be seen in Fig. 12(b). Note that
in the region with strong scene interreflections the inten-
sity contrast is much reduced. The compensation from both
the 1-bounce and the 4-bounce stratified inverses rectifies
the image distortion as shown in Fig. 12(b) and (c) respec-
tively, and the scene interreflections are more much subdued
for the 4-bounce solution. Also note that the compensated
result in Fig. 12(c) closely matches the desired output in
Fig. 12(d). Note that computing the 4-bounce stratified in-
verses requires about 40 seconds, while computing the direct
inverse is impractical at these resolutions.

6.4 Limitations of Our Method

As we can see in Fig. 10, the compensated scan lines os-
cillate about the desired scan line before settling down. The
intensity oscillation represents both over-compensation and
under-compensation. We find that such oscillation is slow
to settle down at the sharp transitions or folds in physical
scenes. For example, the wall corner scene of Fig. 12 has a
visible crack at the wall corner. Intensity oscillation remains
at the fold even though the 4-bounce compensation has com-
pensated most parts of the scene. Whereas in the scene of
Fig. 1, there are shadow regions around some of the hemi-
spheres, which is a form of sharp scene transition. Similarly,
the attempt in compensating for the shadow regions results
in white ring artifacts which is a form of over-compensation
even though other parts of the scene have been compensated.
In future work, we will look into ways to speed up the con-
vergence for stratified compensation at sharp scene transi-
tions.
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(c) Projector output from the
4-bounce stratified inverse

(d) Desired image

sated both geometrically and radiometrically by the 4-bounce stratified
inverse. The result (c) is close to the desired image (d). Note that the
minor intensity differences between the desired image in (d) and the
projector outputs (¢) are due to the residual photometric nonlinearity
left uncorrected by the simplistic projector response curve

7 Conclusions and Future Work

We proposed a stratified computational framework for com-
puting the inverse light transport. More importantly, we
showed that the stratified inverse corresponds to canceling
the corresponding light bounce for each term. As opposed to
our previous work in Ng et al. (2009) that was built on the in-
terreflections cancellation operator introduced in Seitz et al.
(2005), we relate stratified inverses directly to Kajiya’s ren-
dering equation (Kajiya 1986). We validate our theoretical
results on simulations that show the accuracy and computa-
tional efficiency of stratified inverses. We also show the ap-
plication of stratified inverses for projector radiometric com-
pensation.

There are many important directions of future work. In
terms of efficiency, the use of hierarchical or wavelet ma-
trix representations can enhance the sparsity and speed up
higher bounces of the matrix multiplications in our meth-
ods. In terms of acquisition, we would like to extend the
work of Nayar et al. (2006) to full light transport separa-
tion, even in the presence of high-frequency local effects
like sharp subsurface interactions. Using low-frequency il-
lumination to acquire the global light transport promises to
speed up acquisition, and point the way towards radiometric
compensation for dynamic scenes.

We have presented only one application in projector ra-
diometric compensation, but T and its inverse are crucial
in many other problems in computer graphics and vision—
for all of which our theoretical development should provide
new insights. For example, inverse light transport can also be
used for light bounce separation (Seitz et al. 2005) and shape
estimation (Liu et al. 2010). Given the initial work (Liu et al.
2010) showing the connection between inverse light trans-
port and inverse rendering (Marschner 1998; Ramamoorthi
and Hanrahan 2001), there may be further applications for
inverse light transport. Moreover, solving large-scale linear
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problems through matrix inversion or other means is also
crucial in other problem domains such as Google’s PageR-
ank vector computation (Langville and Meyer 2003). In fu-
ture work, we expect many other application domains to
benefit from the stratified inverse framework.
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