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Abstract— We present a new upsampling method to
enhance the spatial resolution of depth images. Given a
low-resolution depth image from an active depth sensor
and a potentially high-resolution color image from a
passive RGB camera, we formulate it as an adaptive cost
aggregation problem and solve it using the bilateral filter.
The formulation synergistically combines the median filter
and the bilateral filter; thus it better preserves the depth
edges and is more robust to noise. Numerical and visual
evaluations on a total of 37 Middlebury data sets demon-
strate the effectiveness of our method. A real-time high-
resolution depth capturing system is also developed using
commercial active depth sensor based on the proposed
upsampling method.

Index Terms— Sensor fusion, bilateral filter, weighted
median filter, GPU.

I. INTRODUCTION

Depth sensing in dynamic real-world environment is a
challenging problem in computer vision. Depth from passive
stereo is well-studied and is known to be reliable only when
sufficient visual information is available for establishing cor-
respondence across multiple cameras. Active depth sensors
like laser range scanners can provide extremely accurate and
dense 3D measurement over a large working volume but are
usually very expensive and can only measure a single point at a
time. Alternatively, depth sensing systems based on the time-
of-flight (ToF) principle can capture the whole scene at the
same time, but they are either very expensive or very limited
in terms of resolution.
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We presented in [54] a framework to enhance the spatial
resolution of depth images (e.g., those from the Canesta sensor
[2]). This approach takes advantage of the fact that a registered
high-quality texture image can provide significant information
to enhance the raw depth image. The depth upsampling prob-
lem is formulated in an adaptive cost aggregation framework.
A cost volume1 measuring the distance between the possible
depth candidates and the depth values bilinearly upsampled
from those captured by the active depth sensor is computed.
The joint bilateral filter is then applied to the cost volume to
enforce the consistence of the cost values and the color values
from the registered RGB image. The high-resolution depth
image is produced by taking the winner-takes-all approach on
the filtered cost volume and a sub-pixel refinement afterward.

In this paper, we analyze the parameter sensitivity of this ap-
proach and the relationship between the proposed framework
and the weighted median filter [55]. Actually, if the joint bilat-
eral filter is replaced with a box filter, the proposed framework
is equivalent to a median filter. Using the joint bilateral filter,
the proposed framework synergistically combines the median
filter and the bilateral filter so that it can better preserve the
depth edges and is more robust to depth sensor noise. When
the cost values are simply the absolute differences between
the possible depth candidates and the captured depth values,
the proposed framework is equivalent to a weighted median
filter.

However, the computational complexity of this method will
be linear in the depth search range. Let the number of depth
hypotheses be L (corresponding to the depth search range),
the proposed method requires L joint bilateral filtering.

We presented in [51] an approach to reduce the computation
complexity by hierarchically upsampling the depth image. At
each scale, a cost volume with up to four cost slices corre-
sponding to four depth hypotheses will be built based on the
current depth image with around 75% mis-sampled pixels. A
joint bilateral filter is then applied to each slice independently
to solve the depth ambiguities of the mis-sampled pixels
via depth propagation. Finally, the depth hypothesis with the
lowest cost at each pixel is selected as correct, and fed to the
next scale for further upsampling. In this case, the number of
depth hypotheses used for voting be L ≤ 4. This approach,
however, is valid only for fronto-parallel surfaces.

1There is an error in Eq. (1) in [54]. Similar to Eq. (1) in [51], the quadratic
cost function (d −D(i)(y, x))

2 should be changed to a linear cost function
|d−D(i)(y, x)|.
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assumption of locally planar surfaces. Instead of using only the
four depth values of the neighbors, we include the mean of the
four depth values for consideration and thus L ≤ 5. This sim-
ple extension of the hierarchical upsampling method in [51]
turns out to be a good solution for non-fronto-parallel scenes.
Using Middlebury data sets [5], our numerical evaluations
show that the new hierarchical approach proposed in this paper
not only reduces the computational complexity of [54] but also
improves the upsampling accuracy. Our GPU implementation
via CUDA shows that the proposed hierarchical upsampling
method can enhance the spatial resolution of depth images
obtained from Canesta sensors [2] from 160 × 120 to VGA
size at a rate of 1200 Hertz on an Nvidia Geforce GTX 580
GPU. The CUDA implementation of the bilateral filter [3]
provided by Nvidia is adopted.

II. RELATED WORK

Passive Stereo Matching. Passive stereo matching is a
fundamental task in computer vision [42]. In the past decade,
much of the community’s effort has been focused on the
specific problem of disparity optimization, producing a number
of excellent optimization methods that have significantly ad-
vanced the state of the art. The key objective of these optimiza-
tion methods is to reduce the matching ambiguities introduced
by low-texture regions, and can be generally separated into
two main categories: global methods and local methods. In
low-texture regions, the lack of visual features makes match-
ing a challenging problem. Global methods based on belief
propagation [21], [46] or graph cuts [13] are formulated in an
energy-minimization framework, where the objective is to find
a disparity solution that minimizes a global energy function;
global methods thus outperform local methods around low-
texture regions. The computational complexity of these global
methods is high, but a number of efficient approximations like
hierarchical belief propagation [20] and constant space belief
propagation [52] algorithms are becoming available.

Active Depth Sensors. Laser range scanners are of high
accuracy and can provide high-resolution 3D measurement
[9], [10], [24], [38], [41], [44]. However, they are usually
very expensive and can only measure a single point at a time;
thus is not suitable for dynamic environments. Active depth
sensing systems based on the time-of-flight (ToF) principle [1],
[30], [2], [6], [4] become popular recently because of their low
cost property and real-time performance. Nevertheless, these
sensors are of low-resolution thus have limited applications.
Kolb et al. [26] gives an account of recent developments
in ToF-technology and discusses the current state of the
integration of this technology into various graphics-related
applications.

Range Image Upsampling. Using a low-resolution depth
image and a registered high-resolution camera image, Diebel
and Thrun [16] design a Markov Random Field (MRF) and
solve it using conjugate gradient (CG) algorithm [39]. This
method gives promising spatial resolution enhancement up to
10×. Kopf et al.[27] propose to use joint bilateral filter for
range image upsampling. A joint bilateral upsampling oper-
ation that can produce full resolution results from solutions

computed at low resolutions was proposed in this paper and
was used in [28] for obtaining high-resolution depth images in
a hybrid camera. A number of extensions of this upsampling
method [27] have been proposed. Riemens et al. [40] choose
to use the joint bilateral filter hierarchically to reduce the
computational cost and Huhle et al. [23] replace the joint
bilateral filter in [27] with a modified nonlocal means filter
[15]. However, these joint upsampling methods are directly
applied to the depth images based on the color information
captured in the corresponding RGB image; thus they are not
suitable for textured scenes (in the color image) as both the
bilateral filter and the nonlocal means filter are known to be
weak for texture suppression [19], [45], [48]. Direct depth
filtering using information from the RGB image (via joint
bilateral filter or nonlocal means filter) imposes the risk of
transferring texture from the color image into the upsampled
depth image.

Bilateral Filter. The bilateral filter is a robust edge-
preserving filter introduced by Tomasi and Manduchi [47]. It
has been used in many computer vision and computer graphics
tasks, and a general overview of the applications can be found
in [36]. A bilateral filter has two filter kernels: a spatial filter
kernel and a range filter kernel for measuring the spatial and
range distance between the center pixel and its neighbors,
respectively. The two filter kernels are traditionally based on
a Gaussian distribution [35], [17]. Specifically, let Ix be the
color at pixel x and I Ix be the filtered value, we want I I

x to be

IIx =

∑
y∈N(x) fS(x,y)fR(Ix, Iy)Iy∑
y∈N(x) fS(x,y)fR(Ix, Iy)

, (1)

where y is a pixel in the neighborhood N(x) of pixel x, and

fS(x,y) = exp(−||x− y||2
2σ2

S

) (2)

and

fR(Ix, Iy) = exp(−||Ix − Iy||2
2σ2

R

) (3)

are the spatial and range filter kernels measuring the spatial
and range/color similarities. The parameter σS defines the
size of the spatial neighborhood used to filter a pixel, and
σR controls how much an adjacent pixel is down-weighted
because of the color difference. A joint (or cross) bilateral
filter [37], [18] is the same as the bilateral filter except that
its range filter kernel fR(·) is computed from another image
named guidance image. Let J denote the guidance image, the
joint bilateral filtered value at pixel x is

IJx =

∑
y∈N(x) fS(x,y)fR(Jx, Jy)Iy∑
y∈N(x) fS(x,y)fR(Jx, Jy)

. (4)

Note that the joint bilateral filter ensures the texture of the
filtered image IJ to follow the texture of the guidance image
J (see Fig. 4 (a)-(b)). In this paper, we normalized the image
intensity such that it ranges from [0, 1]. We also use normalized
image coordinates so that x and y also reside in [0, 1].

Weighted Median Filter. The median filter [29] was orig-
inally introduced for reducing image noise while preserving
edges. It can effectively eliminate impulsive noise and bi-
exponential noise. However, it may cause edge jitter [12],
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median filter [14] is a more general filter. An overview of the
weighted median filter is given in [55]. A nonnegative weight
is assigned to each position in the filter window. The weighted
median filter then sorts the samples inside the filter window,
duplicates each sample to the number of the corresponding
weight, and chooses the median value from the new sequence.
The median filter is thus a special case of the weighted median
filter with the weight being one. One class of weighted median
filters like the topological median filter [43] has weights being
only zero or one. This class of weighted median filters aims
at excluding the contribution from disconnected features in
the neighborhood of the center pixel. Other weighted median
filters have less constraints on the exact weight value but its
distribution. For instance, center weighted median filters [25]
give more weight to the central value of each window. The
original weighted median filter was limited to have “low-pass”
type filtering characteristics due to the nonnegative weight
constraint. To obtain “band-pass” or “high-pass” frequency
filtering characteristics, this constraint is relaxed to real-value
weights and named permutation weighted median filters in [7].
The fuzzy weighted median filter [33] is an extension of per-
mutation weighted median filter with the fuzzy transformation
that incorporates sample diversity into the ordering operation.
Advantages have been observed in applications of DCT coded
image deblocking, impulse removal, and noisy image sharp-
ening. Polynomial weighted median filter [8] also belongs to
permutation weighted median filter. Polynomial models are
capable of approximating a large class of nonlinear systems
with a finite number of coefficients. The use of polynomial
weighting function in a weighted median filter can effectively
exploit the higher order statistics of observed samples while
producing filter outputs that are robust to outliers in the
observation set. Median filters with other weighting functions
were also proposed for different specific applications. For in-
stance, Gaussian weighting function was used for image super-
resolution [32]. In this paper, the Gaussian weighting function
is also used. The main difference is that besides the spatial
distance, the color similarity is also taken into account. The
obtained median filter is named bilateral weighted median
filter in the same manner as the bilateral filter [47] and the
other weighted median filters [32], [8].

III. MOTIVATION

The joint bilateral filter has been demonstrated to be very
effective for color image upsampling [27]. But if it is directly
applied to a depth image with a registered RGB color image
as the guidance image, the texture of the guidance image
(that is independent of the depth information) is likely to be
introduced to the upsampled depth image as shown in Fig. 1.
The upsampling errors mainly reside in the texture transferring
property of the joint bilateral filter as shown in Fig. 4 (a)-(b).
This property also limits its application for the color-depth
misalignment problem presented in Fig. 5 (a)-(d).

Meanwhile, the median filtering operation minimizes the
sum of the absolute error of the given data [22], and is
much more robust to outliers than the bilateral filter. We thus

(a)High-res. RGB image. (b)Ground truth.

(c)Color-mapped. (d)Kopf et al. [27].

Fig. 1. A failure case of [27]. (a) is the registered high-resolution RGB image
(320×278), and (b) is the ground-truth high-resolution disparity (320×278)
with the input low-resolution disparity map (40× 35) showing on the upper
left and the corresponding colored visualized display showing in (c). (d) is the
upsampled high-resolution disparity map obtained from [27]. As can be seen
from (d), this method is not suitable for textured scenes due to the texture
transferring property of the joint bilateral filter demonstrating in Fig. 4 (a)-(b).

focusing on the combination of the median operation with
the bilateral filter so that the texture influence can be better
suppressed while maintaining the edge-preserving property.

Median filter is actually a special case of the weighted
median filter which is a more general filter. Weighted median
filter finds the value minimizing the sum of weighted absolute
error of the given data [55]:

argmin
b

∑
y∈N(x)

W (x,y)|b − Iy|, (5)

where W (x,y) corresponds to the weight assigned to a pixel
y inside a local region centered at pixel x. The weight
is normally designed to suppress noise while maintaining
signal structures such as edges and lines. The use of constant
weight (e.g., W (x,y) = 1) corresponds to the median filter.
To preserve edges, the weights are normally designed based
on existing training signals or the requirement to preserve
certain image details which are supposed to be known by the
designers. For instance, to remove the anisotropic artifacts of
median filter as shown in Fig. 2 (b), isotropic weights can
be used. Filtered result of Fig. 2 (a) using Gaussian weight
is presented in Fig. 2 (c), where W (x,y) = fS(x,y) is a
Gaussian function defined in Eq. (2).

A limitation of the median filter is that it will round existing
corners as can be seen in Fig. 3 (b). Gaussian weighted
median filter cannot solved this problem as shown in Fig.
3 (c). Recall that the bilateral filter can be treated as an
extension of the Gaussian filter so that the weighting for
each pixel is a Gaussian function of both the spatial distance
from the center pixel as well as the relative difference in
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(a)Input (b)Constant Weight (c)Gaussian Weight

Fig. 2. Visual comparison of two different weighted median filters. From
(a)-(c): input image, traditional (constant weighted) median filtered image and
Gaussian weighted median filtered image. Note that the anisotropic artifacts
in (b) are removed from (c).

intensity/color, a bilateral weighted median filter can also be
defined as an extension of Gaussian weighted median filter
whose weight not only depends on the spatial distance but
also the intensity/color difference. According to Eq. (1)-(3)
and (5), the bilateral weighted median filter corresponds to
the following minimization problem:

argmin
b

∑
y∈N(x)

fS(x,y)fR(Ix, Iy)|b − Iy|. (6)

The bilateral weighted median filtered image of Fig. 3 (a)
is presented in Fig. 3 (d). Visual comparison to the other
weighted median filtering results shows that it can better
preserve image structures. The PSNR values computed against
the noise-free input image are presented under Fig. 3 (a)-(d).
Quantitative evaluation using PSNR metric demonstrates its
robustness against noise.

(a)Input (b)Constant (c)Gaussian (d)Bilateral
(26.9 dB) (29.8 dB) (29.1 dB) (45.0 dB)

Fig. 3. Image denoising using weighted median filtering. From (a)-(d): noisy
input image, median filtered image, Gaussian weighted median filtered image
and bilateral weighted median filtered image. The numbers under (a)-(d) are
PSNR values computed against the noise-free input image (which is omitted
here). Note that the bilateral weighted median filter outperforms the others
both qualitatively and quantitatively.

Same as the definition of the joint bilateral filtering, to
enforce the similarity between the filtered image and a guid-
ance image J , the range filter kernel fR(·) in Eq. (6) can be
computed based on J instead of I (which is the image to be
filtered):

argmin
b

∑
y∈N(x)

fS(x,y)fR(Jx, Jy)|b− Iy|, (7)

and the resulted filter is named joint bilateral weighted median
filter (JBM) in this paper. This type of weighted median filter
has been demonstrated to be very effective for depth/disparity
denoising [31] with the assumption of the availability of a
registered RGB image. Fig. 4 presents an example which uses
the RGB image presented in Fig. 1 (a) as the guidance to

filter the depth image presented in Fig. 1 (b). As demonstrated
in Fig. 4 (c)-(d), joint bilateral weighted median filter alle-
viates the texture transferring problem (of the joint bilateral
filter) presented in 4 (a)-(b) while maintaining edge-preserving
property. It is also more robust to the misalignment problem
presented in Fig. 5 (a)-(b). Note that the depth bleeding
artifacts in Fig. 5 (c)-(d) are removed from Fig. 5 (e)-(f).

(a)JBF(σR = 0.05). (b)JBF(σR = 0.10).

(c)JBM(σR = 0.10). (d)JBM(σR = 0.15).

Fig. 4. Texture transferring. (a) and (b) are the joint bilateral filtering
(σS = 0.03) results of the disparity map in Fig. 1 (b) with the RGB image
in Fig. 1 (a) as the guidance image. Note that the texture information in the
RGB image will be transferred to the disparity map. (c) and (d) are the joint
bilateral weighted median filtered results with respect to two different range
filter kernels. Note that the bilateral weighted median filter can preserve the
depth edges without picking up the texture of the RGB guidance image.

(a)RGB image. (b)Disparity image. (c)JBF(σR = 0.05)

(d)JBF(σR = 0.10) (e)JBM(σR = 0.05) (f)JBM(σR = 0.10)

Fig. 5. Misalignment problem. (a) is an input RGB image and (b) is the
corresponding color-mapped depth image. However, the alignment is incorrect
thus the color edges in (a) are not correctly aligned with the depth edges in
(b). The incorrect alignment results in noticeable depth bleeding artifacts after
joint bilateral filtering as shown in (c) and (d) even when large filter kernel
(σS = 0.1) is used. Joint bilateral weighted median filter can potentially
solve this problem with the input RGB image in (a) as the guidance image
as demonstrated in (e)-(f).

IV. APPROACH

In this section, we formulate our depth upsampling problem
in an adaptive cost aggregation framework and solve it using
bilateral filtering in Sec. IV-A. The formulation is then proved
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Bilinearly upsampled
Range image

RGB image:

Cost Volume: Joint bilateral
filtering

Filtered Cost
Volume:

Best cost, Sub pixel
refinement

Upsampled
range image:

Fig. 6. Framework of our upsampling method. The low-resolution depth
image R̃ is bilinearly upsampled to the same size as the high-resolution RGB
image I , and serves as the initial depth map hypothesisR̂. A cost volume V̂ is
built according to the current depth hypothesesR̂. Joint bilateral filtering with
the high-resolution RGB image I as the guidance map is then applied to the
cost volume V̂ to enforce the consistency of the depth edges and color edges.
A winner-take-all and sub-pixel estimation procedure is used to produce a
new depth map hypothesis based on the filtered cost volume V .

to be a combination of the median filter and the bilateral filter
in Sec. IV-B. To further improve the accuracy and reduce the
computational complexity, a hierarchical upsampling method
is proposed in Sec. IV-C. In this paper, we only consider the
field of view shared by the active depth sensor and the passive
RGB camera. We assume that the low-resolution depth image
captured from the active depth sensor is registered with the
high-resolution RGB image, and only the overlapped region
will be processed.

A. Upsampling Using An Adaptive Cost Aggregation Frame-
work

An overview of our depth image upsampling framework is
provided in Figure 6. First, we upsample the low-resolution
depth image R̃ to the same size as the high-resolution RGB
image I . Let it be R̂. A cost volume V̂ is then built based
on R̂. To allow large depth variations (as the current depth
hypotheses are not guaranteed to be correct), the cost function
should become constant when the differences become large.
One such common function is the truncated linear model,
where the cost increases linearly in the distance between the
potential depth candidate d and the upsampled depth value R̂x

at pixel x
V̂x(d) = min(ηL, |d− R̂x|), (8)

where L is the search range and η is a constant. η is set to
0.1 in all experiments conducted in Sec. V.

Joint bilateral filtering is applied to each slice (V̂(d)) of
the cost volume V̂ to enforce the consistency of the depth

edges and color edges as shown in Figure 6. The new depth
image is then computed from the filtered cost volume V by first
selecting the depth hypothesis with the minimal cost and then
a sub-pixel estimation [53] afterwards. In this framework, the
upsampling problem is actually formulated as an adaptive cost
aggregation problem where the support-weights are computed
using a bilateral filter kernel:

Rx = argmin
d

Vx(d)

= argmin
d

∑
y∈N(x) fS(x,y)fR(Ix, Iy)V̂y(d)∑

y∈N(x) fS(x,y)fR(Ix, Iy)

= argmin
d

∑
y∈N(x)

fS(x,y)fR(Ix, Iy)V̂y(d). (9)

The spatial filter kernel fS(·) and the range filter kernel fR(·)
are Gaussian distributions defined in Eq. (2) and (3).

(a) R̂ (b) R̂ (c) η = 1
(Input). (color-mapped). (σR = 0.1).

(d) η = 0.1 (e) η = 1 (f) η = 0.1
(σR = 0.1). (σR = 0.2). (σR = 0.2).

Fig. 7. Bilateral weighted median filter. (a) is an input depth image and
the corresponding colored visualized display is shown in (b). (c) and (e) are
obtained from the bilateral weighted median filter (equivalent to the proposed
fusion framework when η = 1) and (d) and (f) are obtained from the proposed
fusion framework when η = 0.1. σS is set to 0.03 in this experiment. Note
that the tiny dark regions in (c) and (e) are removed from (d) and (f). In this
example, the guidance image used in the proposed framework is the input
image (a) itself. All the other experiments use an additional registered RGB
image as the guidance image.

B. Bilateral Weighted Median Filter

According to Eq. (9), the main operation used in the
proposed framework in Sec. IV-A is the joint bilateral filter.
However, when η = 1 and fS(x,y) = fR(Ix, Iy) = 1, Eq.
(9) becomes

Rx = argmin
d

∑
y∈N(x)

|d− R̂y|. (10)
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the given data [22], the above equation actually computes the
median values of image R̂. As a result, Eq. (9) is a combination
of the median operation with the joint bilateral filter when
the bilateral filter kernel fS(x,y)fR(Ix, Iy) is not a constant
value.

Eq. (9) indeed corresponds to a bilateral weighted median
filter when η = 1. The computational complexity of the brute-
force implementation of the bilateral weighted median filter
is linear in the filter kernel size. However, Eq. (9) allows the
bilateral weighted median filter to be computed independent of
the filter kernel size when constant time bilateral filters [50],
[49] are employed.

In practice, we use η < 1 to further reject potential outliers
as shown in Fig. 7. Note that the tiny dark regions in the
input image in Fig. 7 (b) are preserved in (c) and (e) when
η = 1. However, these regions are very likely to be noise
when presented in a depth image, thus it is reasonable to use
a small η to reduce the contribution from depth noise. Fig.
7 (d) and (f) present the filtered images obtained from the
proposed filtering framework in Eq. (9) when η = 0.1. As
can be seen, most of the tiny dark regions in the input image
are removed. In this example, the guidance image used in the
proposed framework is the input image itself. All the other
experiments use an additional registered RGB image as the
guidance image.

C. Hierarchical Upsampling

By using the color information provided in the registered
RGB images, the method presented in Section IV-A is able to
maintain correct depth edges after upsampling, which is the
main contribution of the paper. However, the computational
cost may be high. The main computation resides in the use
of joint bilateral filtering. Let the number of depth hypotheses
used to create the cost volume V̂ be L as defined in Eq. (8),
L joint bilateral filtering processes will be required.

In this section, we present a hierarchical approach to re-
duce the computational complexity. We start from the lowest
resolution (the resolution of the original depth image R̃), and
hierarchically estimate the depth values for the mis-sampled
pixels. An example is shown in Figure IV-B (a) with the
assumption that the original low-resolution depth image R̃ has
only 9 pixels (blue squares in Figure IV-B (a)). We increase the
resolution of R̃ and show the new depth image in Figure IV-B
(b). Let Ř(0) denote this new depth image. Meanwhile, the
high-resolution RGB image I will be downsampled to a new
RGB image I(0) so that I(0) has the same spatial resolution as
Ř(0). We do not apply any low-pass filter to the RGB image
prior to downsampling. Otherwise, the color edges are likely
to be blurred and the depth edges will not be preserved in
the upsampled depth image. The white squares in Ř(0) in
Figure IV-B (b) are mis-sampled pixels (without depth values)
and blue squares are pixels with depth values captured from
the range sensor. We next propagate the depth values from
the blue squares to the white squares sequentially. For every
white pixel x which has four blue neighbors (as shown in
Figure IV-B (c)), we estimate its depth value by selecting one

from the four depth values of its four blue neighbors based on
the framework presented in Section IV-A. Specifically, let �dx
denote a vector comprising of the four depth values of the four
blue neighbors and B denote the collection of all pixels with
depth values (blue squares in Figure IV-B), the depth value of
the white square is computed as follows:

R(0)
x = arg min

d∈�dx

∑
y∈N(x)

λ(y)fS(x,y)

fR(I
(0)
x , I(0)y )min

(
ηL, |d− Ř(0)

y |
)
, (11)

where L and η are defined in Eq. (8), and

λ(y) =

{
1 if y ∈ B,
0 else.

The depth values of the white squares will be estimated
using Eq. (11), which requires four joint bilateral filtering
processes and a winner-take-all procedure. We show the depth
estimation result in Figure IV-B (d). Pixels with depth values
propagated from blue pixels are presented as green squares.
This is the end of the first depth propagation.

We next change all the green squares to blue, and start
a new depth propagation process as shown in Figure IV-B
(e)-(f). Finally, only a part of the boundary pixels remain to
be white as shown in Figure IV-B (g). We thus start final
propagation using Eq. (11). The boundary pixels has up to
three blue neighbors, so the length of �d is less or equal to three.
The final upsampled depth image R(0) (i = 0) is presented
in Figure IV-B (h). We next go up to a higher resolution as
shown in Figure IV-B (i), and estimate the depth values for the
new white squares (mis-sampled pixels) until the RGB image
I’s spatial resolution is reached. If the resolution of the high-
resolution RGB image is different from the resolution of the
final upsampled depth image, it may result in either a whole
line of mis-sampled pixels on the right or/and on the bottom
at some scale. In this case, we simply add an extra round of
depth propagation to estimate the depth values of these mis-
sampled pixels.

Confining the depth hypothesis to only the depth values of
four neighbors with sampled depth values is valid for fronto-
parallel surfaces. However, when this assumption is violated,
the performance can be greatly deteriorated. For instance, a
floor surface perpendicular to the image plane. A synthetic
non-fronto-parallel scene is presented in Figure 9. The image
resolution is enhanced 64× in this example. The upsampling
result using only four depth hypotheses is presented in Figure
9 (d). Obviously, it results in quantization errors as the correct
depth value of a white square may not be presented in the
depth values of its four blur neighbors.

Relaxing the fronto-parallel surfaces assumption to only
planar surfaces, the quantization errors can be greatly reduced
by adding all possible depth values. However, this will greatly
increase the computational complexity. Nevertheless, our ex-
periment shows that adding as few as one depth hypothesis
at each mis-sampled pixels is usually enough. Specifically,
instead of using only the four depth values of the neighbors,
we include the mean of the four depth values for consideration.
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(a) o . (b) Higher resolution . (c) First propagation. (d) After first propagation. (e) Second propagation.

(h) Upsampled range image . (g) Final propagation. (f) After second propagation.

(i) Higher resolution .

Fig. 8. An overview of our hierarchial upsampling approach. At each scale i ≥ 0, we increase the spatial resolution of the current depth image ( when
i = 0, see (a)), such that only about 25% of the new depth image Ř(i) contains depth estimates (blue squares), and the rest without depth estimates (white
squares) as shown in (b). We then propagate the depth values from the blue squares to white squares sequentially in three steps as shown from (c)-(g). (c)-(d)
depict the first depth propagation step. We first locate white squares with four blue neighbors. The depth value of each white square are then selected from
the depth values of its blue neighbors based on the framework presented in Section IV-A. We next change the white squares with estimated depth values to
blue. The second step shown in (e)-(f) is the same as the first step: propagate depth values from blue squares to white squares. In the final step, we estimate
the depth values for the white boundary pixels as shown in (g). (h) shows the result after depth propagation: R(i) . We then go to the next scale and do the
depth propagation again until the spatial resolution of the RGB image I is reached.

(a)High-res RGB. (b)Low-res depth. (c)Ground truth. (d)4 hypo (60.8%). (e)5 hypo (4.68%). (f)8 hypo (4.52%).

Fig. 9. A synthetic non-fronto-parallel scene. (a) is the original high-resolution RGB image (432 × 384); (b) to (f) are color-mapped depth images: (b)
low-resolution depth image (54× 48); (c) ground-truth high-resolution depth image (432× 384); (d) high-resolution depth image obtained from our method
with 4 depth hypotheses; (e) high-resolution depth image obtained from our method with 5 depth hypotheses; (f) high-resolution depth image obtained from our
method with 8 depth hypotheses. The spatial resolution is enhanced 64×. The percentage of bad pixels in (d)-(f) are 60.8%, 4.68% and 4.52%, respectively.

The upsampled depth image using these five depth hypotheses
is presented in Figure 9 (e). The percentage of bad pixels 2 in
the upsampled depth image is 4.68%. If we add another three
depth hypotheses, the upsampling accuracy does not improve
much as shown in Figure 9 (f). The percentage of bad pixels
in the upsampled depth image in Figure 9 (f) is 4.52%. Hence,
in all the experiments conducted, we set the number of depth
hypothesis to be five.

V. EXPERIMENTS

In this section, we present experiments on real images to
demonstrate the effectiveness and robustness of our method.
Sec. V-A numerically evaluate the performance of our method
using Middlebury data sets. These data sets are obtained using
structured light and there may be holes remaining in areas
where structured light fails (due to the lack of illumination

2If the disparity error of a pixel is larger than 1, it is treated as a bad pixel.

codes to begin with). In this paper, pixels inside the holes are
treated as outliers and are left unchanged.

Our experiments demonstrate that the proposed upsampling
method is robust to parameter σR and σS (in Eq. (2) and
(3), respectively), and that the proposed upsampling methods
outperform existing depth upsampling methods [27], [23], [40]
on average. For simplicity, in the rest of the paper, we will
refer to our upsampling method in Section IV-A as JBMU, and
the hierarchical method in Section IV-C as HJBMU. Section
V-B presents visual evaluation on real indoor images. A high-
resolution depth sensing system using Canesta sensor [2] is
developed based on our HJBMU method. This system can
upsample a 160× 120 depth image to 640× 480 at a rate of
1200 Hertz on an Nvidia Geforce GTX 580 GPU with very
few visible errors.
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R

 (σ
S
=0.01)

 

σ R

5

10

15

20

25

5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

0.5

0.6  

Our HJBMU (Sec. II−C): evaluation of the sensitivity of parameter σ
R

 (σ
S
=0.01)

The 37 datasets from the Middlebury benchmark

 

σ R

5

10

15

20

25

5 10 15 20 25 30 35

0.1

0.2

0.3

0.4

0.5

0.6  

The 37 datasets from the Middlebury benchmark

Our HJBMU (Sec. II−C): evaluation of the sensitivity of parameter σ
R

 (σ
S
=0.02)

 

σ R

5

10

15

20

25

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

The 37 datasets from the Middlebury benchmark

s.
t.d

. o
f p

er
ce

nt
ag

e 
of

 b
ad

 p
ix

el
s 

(%
)

σ
R

 ∈ [0.02, 0.60]

 

 

Our JBMU (Sec. II−A), σ
S
=0.01

Our HJBMU (Sec. II−C), σ
S
=0.01

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The 37 datasets from the Middlebury benchmark
s.

t.d
. o

f p
er

ce
nt

ag
e 

of
 b

ad
 p

ix
el

s 
(%

)

σ
R

 ∈ [0.02, 0.60]

 

 

Our JBMU (Sec. II−A), σ
S
=0.03

Our HJBMU (Sec. II−C), σ
S
=0.01

5 10 15 20 25 30 35
0

0.5

1

1.5

The 37 datasets from the Middlebury benchmark

s.
t.d

. o
f p

er
ce

nt
ag

e 
of

 b
ad

 p
ix

el
s 

(%
) σ

R
 ∈ [0.02, 0.60]

 

 

Our JBMU (Sec. II−A), σ
S
=0.05

Our HJBMU (Sec. II−C), σ
S
=0.02

(a) 4× (0.09%). (b) 16× (0.14%). (c) 64× (0.21%).

Fig. 10. Sensitivity of parameter σR when the spatial resolution is enhanced 4×, 16× and 64×, respectively. (a)-(c) evaluate the performance when σS is
a constant and σR ∈ [0.02, 0.60]. The color maps in the first two rows correspond to the percentage of bad pixels obtained from our JBMU and HJBMU
upsampling methods. Red means higher error rate, and blue lower. The last row presents the standard deviations of our upsampling methods. The maximum
standard deviations of the percentage of bad pixels from our HJBMU method are placed under the curves, which demonstrate that our method is robust to
parameter σR for all the 37 Middlebury data sets[5].
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Fig. 11. Sensitivity of parameter σS when the spatial resolution is enhanced 4×, 16× and 64×, respectively. (a)-(c) evaluate the performance when σR is
a constant and σS ∈ [0.01, 0.05]. The color maps in the first two rows correspond to the percentage of bad pixels obtained from our JBMU and HJBMU
upsampling methods. Red means higher error rate, and blue lower. The last row presents the standard deviations of our upsampling methods. The maximum
standard deviations of the percentage of bad pixels from our HJBMU method are placed under the curves, which demonstrate that our method is robust to
parameter σS for all the 37 Middlebury data sets[5].

A. Numerical Evaluation Using Middlebury Data Sets

In this section, we numerically compare Kopf’s method [27]
and its extensions [23], [40] with our JBMU and HJBMU
method. A total of 37 data sets from Middlebury benchmark
[5] are used. Each data set contains a disparity map obtained

from structured light and a registered RGB image. The dis-
parity map is considered as the ground truth for quantitative
analysis. We downsample the ground-truth disparity map to
obtain the low-resolution disparity map, which is then fed to
the upsampling methods for spatial enhancement. To avoid
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Fig. 12. Percentage of bad pixels obtained with constant parameter setting for all the 37 Middlebury data sets [5]. From top to bottom: spatial enhancement
at 4×, 16×, and 64×.
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Fig. 13. Percentage of bad pixels obtained with constant parameter setting for all the 37 Middlebury data sets [5] when an anti-aliasing filter is used. From
top to bottom: spatial enhancement at 4×, 16×, and 64×.

blurring depth edges, we adopt the depth downsampling
scheme used by Middlebury benchmark [5]: no low-pass filter
will be applied to the depth image prior to downsampling. The
upsampled disparity map is compared with the ground truth for
quantitative evaluation. The same criteria as the Middlebury
benchmark is used. Specifically, we use the percentage of bad
pixels. A pixel is considered to be bad pixel if the difference
of the upsampled disparity map and the ground truth is larger
than one disparity. The larger the percentage of bad pixels, the
lower the performance.

To analyze the sensitivity of parameter σR and σS that are
used to control the behavior of joint bilateral filter, we first
set σS to a constant and then change σR from 0.02 to 0.60 to
collect the error rate of our JBMU and HJBMU upsampling
method. The experimental results are presented in Fig. 10. We
next set σR to a constant and let σS vary between 0.01 and
0.05 to analyze the sensitivity of parameter σS . The results are
reported in Fig. 11. The spatial resolution was enhanced 4×,
16× and 64× in both experiments. The colors in Fig. 10-11
correspond to the percentage of bad pixels. Red means higher
percentage and blue lower. The upsampling accuracy of our
HJBMU method appears to be better than JBMU method as
most of its colors are blue. The last rows in Fig. 10 and 11
report the standard deviations of the upsampling errors of the
two proposed methods. Let σR ∈ [0.02, 0.60] (for 8-bit image,
it means that σR ∈ [5, 153]), the maximum standard deviation
of the percentage of bad pixels among the 37 Middlebury
data sets [5] obtained using our HJBMU method is 0.09,
0.14 and 0.21 for spatial enhancement at 4×, 16× and 64×,
respectively. Apparently, the performance of HJBMU method
is very robust with respect to σR. Let σS ∈ [0.01, 0.05], in
Fig. 11, the maximum standard deviations of our HJBMU
method is 0.11, 0.33 and 0.63, respectively. This numerical
comparison shows that our HJBMU method is more sensitive
to σS than σR. This is also true to our JBMU method as can
be seen from the green curves in the last rows in Fig. 10 and
11.

Finally, we need to choose a constant parameter setting
for all the 37 Middlebury data sets [5]. For each upsam-
pling method, we locate the σR values corresponding to the
minimum error rate at each data set (in Fig. 10) and use
the mean as the best estimate. So is the σS parameter. The
errors obtained from these constant parameter settings are
summarized in Fig. 12. As can be seen, our methods (green
and pink curves) outperform the other upsampling methods
[27], [40], [23] on average. The black dash curves in Fig.
12 (a)-(c) correspond to the upsampling method presented
in [23], which replace the joint bilateral filter in [27] with
a modified nonlocal means filter. Its performance is actually
very close to [27] (the yellow curves). The performance of the
nonlocal means based upsampling method presented in [23]
is similar to the joint bilateral upsampling method as a noise-
free high-resolution RGB image will be used to guide the
upsampling of the low-resolution depth image. Meanwhile, the
main contribution of the hierarchical joint bilateral upsampling
method presented in [40] is to reduce the computational cost
of the original joint bilateral upsampling method [27] thus its
performance (the blue curve in Fig. 12 (c)) is also close to
[27]. Note that the error rates of all the upsampling methods
at the 11th data set are very close to each other. This is mainly
because the depth variances of this data set is very smooth,
and thus very few depth edges.

The low-resolution disparity maps used in all the above
experiments were downsampled from the corresponding high-
resolution disparity maps without anti-aliasing pre-filtering.
In practice, some depth cameras do come with anti-aliasing
filters. To simulate the behavior of this type of cameras, a low-
pass filter was applied to the high-resolution disparity maps
before downsampling, and the upsampling errors obtained
with constant parameter settings are summarized in Fig. 13.
The low-pass filter blurs the depth edges and deteriorates the
upsampling accuracy.
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(a)Huhle et al. [23]. (b)Riemens et al. [40].

(c)Our JBMU. (d)Our HJBMU.

Fig. 14. Upsampling results on a textured Middlebury data set. (a) to (d)
are the upsampled disparity maps obtained using the upsampling methods
presented in [23], [40], our JBMU method, and our HJBMU method,
respectively. As can be seen, Kopf’s method [27] (see Fig. 1 (d)) and its
extensions [23], [40] are not suitable for textured scenes as the joint bilateral
filter and the nonlocal means filter are weak for texture suppression. The
spatial resolution is enhanced 64× in this example.

B. Visual Evaluation Using Real Indoor Data Sets

We present visual evaluation on the presented upsampling
methods in this section. We start from Middlebury data sets.
Fig. 1 (d) and Fig. 14 present experimental results on the
textured Middlebury data set in Fig. 1 (a). As can be seen,
Kopf’s method [27] and its extensions ([23] and [40]) are not
suitable for textured scenes as the joint bilateral filter and the
nonlocal means filter are weak for texture suppression. We
next present results obtained from a real-time high-resolution
depth sensing system based on our HJBMU method. Two
frames extracted from a video captured from our system is
presented in Figure 15. The first row in Figure 15 (a) and
(b) are high-resolution (640 × 480) RGB images and low-
resolution (160 × 120) depth images and brightness images
captured by Canesta sensor [2]. Our system can upsample the
depth image and brightness image at a rate of 1200 Hertz
(on an Nvidia Geforce GTX 580 GPU) with very few visible
errors as shown in the last row of Figure 15 (a) and (b).

VI. CONCLUSION

We have presented a robust range image upsampling method
based on weighted median filtering. It extends our previous
upsampling methods presented in [54] and [51] for non-fronto-
parallel scenes. Additionally, we have given detailed analysis
of its parameter sensitivity and discussed the relationship
between the proposed framework and the weighted median
filter. Using adaptive weights computed from a registered
high-resolution RGB image based on a joint bilateral filter
operation, the proposed weighted median filter based up-
sampling method can upsample 160 × 120 depth image to

(a)

(b)

Fig. 15. Frames captured using our real-time depth upsampling system. The
first rows in (a) and (b) are high-resolution (640 × 480) RGB images and
low-resolution (160× 120) depth images and brightness images captured by
Canesta sensor [2]. The last rows in (a) and (b) present the upsampling results.
The depth edges are well-preserved in the upsampled images, e.g., the details
of the fingers in (b).

VGA size at a rate of 1200 Hertz with few noticeable errors.
The effectiveness and robustness of proposed method have
been demonstrated on several real data sets, including 37
Middlebury data sets.

REFERENCES

[1] 3dv systems, z-cam.
http://en.wikipedia.org/wiki/ZCam.

[2] Canesta inc.
http://en.wikipedia.org/wiki/Canesta.

[3] Cuda c/c++ sdk code samples.
http://developer.nvidia.com/cuda/cuda-cc-sdk-code-samples.

[4] Fotonic, fotonic-b70.
http://www.fotonic.com/content/News-And-Press/Default.aspx.

[5] Middlebury stereo benchmark.
http://vision.middlebury.edu/stereo/data.

[6] Pmd technologies, pmd s3.
http://www.pmdtec.com/.

[7] G. R. Arce and J. Paredes. Image enhancement and analysis with
weighted medians. Nonlinear Image Processing, pages 27–68, 2001.

[8] K. E. Barner and T. C. Aysal. Polynomial weighted median filtering.
IEEE Trans. Signal Processing, 54(2):635–650, 2006.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.[9] J. Batlle, E. Mouaddib, and J. Salvi. Recent progress in coded structured
light as a technique to solve the correspondence problem: A survey.
Pattern Recognition, 31(7):963–982, 1998.

[10] P. Besl. Active Optical Range Imaging Sensors, in Advances in Machine
Vision, chapter 1, pages 1–63. 1989.

[11] A. C. Bovik. Streaking in median filtered images. IEEE Transactions
on Acoustics, Speech and Signal Processing, 35(4):493–503, 1987.

[12] A. C. Bovik, T. S. Huang, and D. C. Munson, Jr. The effect of median
filtering on edge estimation and detection. IEEE Trans. Pattern Anal.
Mach. Intell., 9(2):181–194, 1987.

[13] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy min-
imization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.,
23(11):1222–1239, 2001.

[14] D. R. K. Brownrigg. The weighted median filter. Commun. ACM,
27(8):807–818, 1984.

[15] A. Buades, B. Coll, and J. Morel. Nonlocal image and movie denoising.
International Journal of Computer Vision, 76:123–139, 2008.

[16] J. Diebel and S. Thrun. An application of markov random fields to
range sensing. In Neural Information Processing Systems, pages 291–
298, 2005.

[17] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-
dynamic-range images. ACM Transactions on Graphics, 21(3):257–266,
2002.

[18] E. Eisemann and F. Durand. Flash photography enhancement via
intrinsic relighting. ACM Transactions on Graphics, 23(3):673–678,
2004.

[19] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-preserving
decompositions for multi-scale tone and detail manipulation. ACM
Transactions on Graphics, 27(3):67:1–67:10, 2008.

[20] P. Felzenszwalb and D. Huttenlocher. Efficient belief propagation for
early vision. International Journal of Computer Vision, 70(1):41–54,
2006.

[21] W. T. Freeman, E. Pasztor, and O. T. Carmichael. Learning low-level
vision. International Journal of Computer Vision, 40(1):25–47, 2000.

[22] P. Huber. Robust statistics. Wiley, New York, 1981.
[23] B. Huhle, T. Schairer, P. Jenke, and W. Straı́er. Fusion of range and color

images for denoising and resolution enhancement with a non-local filter.
Computer Vision and Image Understanding, 114:1336–1345, 2010.

[24] R. Jarvis. A perspective on range finding techniques for computer
vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):122–139, 1983.

[25] S. J. Ko and Y. H. Lee. Center weighted median filters and their
applications to image enhancement. IEEE Transactions on Circuits and
Systems, 38(2):984–993, 1991.

[26] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight cameras in
computer graphics. Computer Graphics Forum, pages 141–159, 2009.

[27] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral
upsampling. ACM Transactions on Graphics, 26(3):673–678, 2007.

[28] Feng Li, Jingyi Yu, and Jinxiang Chai. A hybrid camera for motion
deblurring and depth map super-resolution. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–12, 2008.

[29] Tukey. l.W. Exploratory data analysis. Addison-Wesley, Reading, Mass.,
1974.

[30] Swiss Ranger SR-2 MESA Imaging AG. The swiss center for electronics
and microtechnology.
http://www.mesa-imaging.ch/.

[31] M. Mueller, F. Zilly, and P. Kauff. Adaptive cross-trilateral depth map
filtering. In 3DTV Conference - DTV-CON, pages 1–4, 2010.

[32] A. Nasonov and A. Krylov. Fast super-resolution using weighted median
filtering. In International Conference on Pattern Recognition, pages
2230 – 2233, 2010.

[33] Y. Nie and K. E. Barner. The fuzzy transformation and its applications
in image processing. IEEE Trans. Image Processing, 15(4):910–927,
2006.

[34] Ari Nieminen, Pekka Heinonen, and Yrjo Neuvo. A new class of detail-
preserving filters for image processing. IEEE Trans. Pattern Anal. Mach.
Intell., 9(1):74–90, 1987.

[35] S. Paris and F. Durand. A fast approximation of the bilateral filter using
a signal processing approach. International Journal of Computer Vision,
81:24–52, January 2009.

[36] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral filtering:
Theory and applications. Foundations and Trends in Computer Graphics
and Vision, 4(1):1–73, 2009.

[37] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and
K. Toyama. Digital photography with flash and no-flash image pairs.
ACM Transactions on Graphics, 23(3):664–672, 2004.

[38] D. Poussart and D. Laurendeau. 3-D Sensing for Industrial Computer
Vision, in Advances in Machine Vision, chapter 3, pages 122–159. 1989.

[39] W. H. Press. Numerical recipes in C: the art of scientific computing.
Cambridge University Press, New York, 1988.

[40] A. K. Riemens, O.P. Gangwal, B. Barenbrug, and R-P.M Berretty. Mul-
tistep joint bilateral depth upsampling. In SPIE Visual Communication
and Image Processing, volume 7257, pages 336–347, 2009.

[41] J. Salvi, J. Pagès, and J. Batlle. Pattern codification strategies in
structured light systems. Pattern Recognition, 37(4):827–849, 2004.

[42] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal of
Computer Vision, 47(1/2/3):7–42, April-June 2002.

[43] H. Senel, R. Peters, and B. Dawant. Topological median filters. IEEE
Trans. Image Processing, 11(2):89–104, 2002.

[44] T. C. Strand. Optical three-dimensional sensing for machine vision.
Optical Engineering, 24(1):33–40, 1985.

[45] K. Subr, C. Soler, and F. Durand. Edge-preserving multiscale image
decomposition based on local extrema. ACM Transactions on Graphics,
pages 147:1–147:9, 2009.

[46] J. Sun, N. Zheng, and H. Y. Shum. Stereo matching using belief
propagation. IEEE Trans. Pattern Anal. Mach. Intell., 25(7):787–800,
2003.

[47] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.
In IEEE International Conference on Computer Vision, pages 839–846,
1998.

[48] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0 gradient
minimization. ACM Transactions on Graphics, 30(6):174:1–174:12,
2011.

[49] Q. Yang. Recursive bilateral filtering. In European Conference on
Computer Vision, pages 399–413, 2012.

[50] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o(1) bilateral filtering. In
IEEE Conference on Computer Vision and Pattern Recognition, pages
557–564, 2009.

[51] Q. Yang, K.-H. Tan, B. Culbertson, and J. Apostolopoulos. Fusion of
active and passive sensors for fast 3d capture. In IEEE International
Workshop on Multimedia Signal Processing, pages 69–74, 2010.

[52] Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation
algorithm for stereo matching. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1458–1465, 2010.

[53] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister. Stereo
matching with color-weighted correlation, hierachical belief propagation
and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell.,
31(3):492–504, 2009.

[54] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution
for range images. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 291–298, 2007.

[55] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median filters:
A tutorial. IEEE Trans. Circuits and Systems II: Analog and Digital
Signal Processing, 43(3):157–192, 1996.

Qingxiong Yang received the BE degree in Elec-
tronic Engineering & Information Science from
University of Science & Technology of China in
2004 and the PhD degree in Electrical & Computer
Engineering from University of Illinois at Urbana-
Champaign in 2010. He is an assistant Professor in
the Computer Science Department at City University
of Hong Kong. His research interests reside in com-
puter vision and computer graphics. He is a recipient
of the best student paper award at MMSP 2010 and
the best demo award at CVPR 2007.



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.Narendra Ahuja received the B.E. degree with
honors in electronics engineering from the Birla
Institute of Technology and Science, Pilani, India, in
1972, the M.E. degree with distinction in electrical
communication engineering from the Indian Institute
of Science, Bangalore, India, in 1974, and the Ph.D.
degree in computer science from the University of
Maryland, College Park, USA, in 1979. From 1974
to 1975 he was Scientific Officer in the Department
of Electronics, Government of India, New Delhi.
From 1975 to 1979 he was at the Computer Vision

Laboratory, University of Maryland, College Park. Since 1979 he has been
with the University of Illinois at Urbana-Champaign where he is currently
Donald Biggar Willet Professor in the Department of Electrical and Computer
Engineering, the Beckman Institute, and the Coordinated Science Laboratory.
His current research is focused on extraction and representation of spatial
structure in images and video; integrated use of multiple image-based sources
for scene representation and recognition; versatile sensors for computer vision;
and applications including visual communication, image manipulation, and
information retrieval. He is a fellow of IEEE, ACM, AAAI, AAAS, IAPR,
and SPIE.

Ruigang Yang received the MS degree in Com-
puter Science from Columbia University in 1998
and the PhD degree in Computer Science from
the University of North Carolina, Chapel Hill, in
2003. He is an associate professor in the Computer
Science Department, University of Kentucky. His
research interests include computer vision, computer
graphics, and multimedia. He is a recipient of the US
National Science Foundation (NSF) Faculty Early
Career Development (CAREER) Program Award in
2004.

Kar-Han Tan received the B.Sc. degree from the
National University of Singapore, Singapore, the
M.S. degree from the University of California, Los
Angeles, and the Ph.D. in computer science from the
University of Illinois at Urbana-Champaign, Urbana,
IL.

While with the University of Illinois at Urbana-
Champaign, he was a Beckman Graduate Fellow.
He is currently a Senior Research Scientist with
the Mobile and Immersive Experience Lab (MIXL),
Hewlett-Packard Laboratories, Palo Alto, CA, where

he is working on 3-D capture and display technologies as well as next-
generation remote collaboration systems. He contributes actively to the
research community and has received best paper awards for his work. Prior
to joining Hewlett-Packard, he was Manager of Algorithms Group, EPSON
R&D, where he led the invention of View Projection, a technique that enables
one-touch setup of light displays on arbitrary surfaces. He coinvented multi-
flash imaging at Mitsubishi Electric Research Lab (MERL) and the Virtual
Structures algorithm at the University of California, Los Angeles, which is
widely recognized today as one of the fundamental techniques for mobile
robot formation control.

James Davis is an Associate Professor in Computer
Science at the University of California, Santa Cruz.
He received his PhD from Stanford University in
2002, and was previously a senior research scientist
at Honda Research Institute. His existing research
expertise is in computer graphics, machine vision,
and sensing systems for building digital models of
the real world, work that has resulted in over 80 peer-
reviewed publications, patents, and invited talks,
received best paper awards at ICRA 2003, ICCV
2009, and an NSF CAREER award. His research

has been commercialized by companies including Sony and PrenticeHall. He
serves as the Faculty Director of the Center for Entrepreneurship at UCSC,
and sits on advisory councils for a handful of startups and nonprofits.

Bruce Culbertson received the M.A. degree in
mathematics from the University of California, San
Diego, and the M.S. degree in computer and infor-
mation science from Dartmouth College, Hanover,
NH.

He joined Hewlett-Packard in 1983 and has
worked at Hewlett-Packard Laboratories, Palo Alto,
CA, since 1984. He manages researchers with ex-
pertise in computer vision and graphics who have
applied those disciplines primarily to multimedia
communications for the last decade. Prior to that,

he worked on voice and data networks, computer design, computer-aided
design of digital logic, reconfigurable computers, and defect-tolerant computer
design. He has served on the program committees of IEEE CVPR and IEEE
ICCV. His research interests are in computer vision and multimedia.

John Apostolopoulos received the B.S., M.S., and
Ph.D. degrees from the Masachusetts Institute of
Technology (MIT), Cambridge.

He is a Distinguished Technologist and the Di-
rector of the Mobile and Immersive Experience Lab
(MIXL) with Hewlett-Packard Laboratories, Palo
Alto, CA. He also teaches and conducts joint re-
search at Stanford University, Stanford, CA, where
he is a Consulting Associate Professor of Electrical
Engineering, and he is a frequent Visiting Lecturer
with MIT. His research interests include immersive

communication and improving the reliability, fidelity, scalability, and security
of multimedia communications over wired and wireless packet networks.

Dr. Apostolopoulos was the recipient of Emmy Award Certificate for his
contributions to the U.S. Digital TV standard. He was named one of the
world’s top 100 young (under 35) innovators in science and technology
(TR100) by MIT Technology Review in 2003 and was the recipient of a
number of Best Paper awards.

Gang Wang is an Assistant Professor in Electrical
and Electronic Engineering at the Nanyang Tech-
nological University. He is also a Research Scientist
of the Advanced Digital Science Center. He received
the B.S. degree from Harbin Institute of Technology,
China, in 2005 and the Ph.D. degree from the
University of Illinois at Urbana-Champaign, Urbana.
His research interests include computer vision and
machine learning.


