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ABSTRACT

Hand segmentation for hand-object interaction is a necessary
preprocessing step in many applications such as augmented
reality, medical application, and human-robot interaction.
However, typical methods are based on color information
which is not robust to objects with skin color, skin pigment
difference, and light condition variations. Thus, we pro-
pose hand segmentation method for hand-object interaction
using only a depth map. It is challenging because of the
small depth difference between a hand and objects during
an interaction. To overcome this challenge, we propose the
two-stage random decision forest (RDF) method consist-
ing of detecting hands and segmenting hands. To validate
the proposed method, we demonstrate results on the novel
dataset of hand segmentation for hand-object interaction. The
proposed method achieves high accuracy in short processing
time comparing to the other state-of-the-art methods.

Index Terms— Hand segmentation, human-machine in-
teraction, random decision forest, depth map

1. INTRODUCTION

Recently, with the expansion of virtual reality (VR), aug-
mented reality (AR), robotics, and intelligent vehicles, the
development of new interaction technologies has become
unavoidable since these applications require more natural
interaction methods rather than input devices. For these ap-
plications, many researches have been conducted such as
gesture recognition and hand pose estimation. However, most
technologies focus on understanding interactions which do
not involve touching or handling any real world objects al-
though understanding interactions with objects is important
in many applications. We believe that this is because hand
segmentation is much more difficult in hand-object interac-
tion. Thus, we present a framework of hand segmentation for
hand-object interaction.
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1.1. Related work

Hand segmentation has been studied for many applications
such as hand pose estimation [1–6], hand tracking [7–9],
and gesture/sign/grasp recognition [10, 11]. In color image-
based methods, skin color-based method has been popu-
lar [10, 12–16]. For hand-object interaction, Oikonomidis
et al. and Romero et al. segmented hands by thresholding
skin color in HSV space [4, 5, 7, 8]. Wang et al. processed
hand segmentation using a learned probabilistic model where
the model is constructed from the color histogram of the
first frame [6]. Tzionas et al. applied skin color-based seg-
mentation using the Gaussian mixture model [17]. However,
skin color-based segmentation has limitations in interacting
with objects in skin color, segmenting from other body parts,
skin pigment difference, and light condition variations. An
alternative method is wearing a specific color glove [18].

For depth map-based methods, popular methods are us-
ing a wrist band [3, 9, 11] or using random decision forest
(RDF) [1, 2, 19]. Although the method using a black wrist-
band is simple and effective, it is inconvenient. Moreover,
the method cannot segment hands from objects during hand-
object interaction since it processes segmentation by finding
connected components. Tompson et al. [1] and Sharp et al. [2]
proposed the RDF-based methods based on [19]. Although
the purposes of the methods are slightly different comparing
to the proposed method, the methods are the most relevant
methods.

In this paper, we propose the hand segmentation method
for hand-object interaction using only a depth map to avoid
the limitations of skin color-based methods. We present the
two-stage RDF method to achieve high accuracy efficiently.

2. METHOD

We propose two-stage RDF for hand segmentation for hand-
object interaction. In our two-stage RDF, the first RDF detects
hands by processing the RDF on an entire depth map. Then,
the second RDF segments hands in pixel-level by applying
the RDF in the detected region. This cascaded architecture is
designed for the second RDF to focus on the segmentation of
hands from objects and close body parts such as an arm.



Fig. 1. Random decision forest. Red, black, and green circles
represent root nodes, split nodes, and leaf nodes, respectively.

RDF consists of a collection of decision trees as shown in
Fig. 1. Each decision tree is composed of a root node, splitting
nodes, and leaf nodes. Given an input data at the root node, it
is classified to child nodes based on the split function at each
splitting node until it reaches a leaf node. In this paper, the
input data is the location of each pixel on a depth map. The
split function uses the feature of the depth difference between
two relative points on the depth map in [19]. At a leaf node,
a conditional probability distribution is learned in a training
stage, and the learned probability is used in a testing stage.
For more details about RDF, we refer the readers to [20–22].

2.1. Training

Given a training dataset D, the algorithm randomly selects a
set Di of depth maps D and then randomly samples a set of
data points x in the region of interest (ROI) on the selected
depth maps D. The ROI is the entire region on the depth
maps in the first stage. It is the detected regions using the first
RDF in the second stage (see Fig. 2). The sampled set of data
points x and the corresponding depth maps D are inputs to
the training of a decision tree.

Using the inputs (x, D), the algorithm learns a split func-
tion at each splitting node and a conditional probability distri-
bution at each leaf node. First, learning the split function in-
cludes learning a feature f(·) and a criteria θ. We use the fea-
ture f(·) of the depth difference between two relative points
{x + u/Dx,x + v/Dx} in [19] as follows:

f(x,D,u,v) = Dx+u/Dx
−Dx+v/Dx

(1)

where Dx denotes the depth at a pixel x on a depth map D;
u ∈ R2 and v ∈ R2 represent offset vectors for each relative
point. Then, the criteria θ decides to split the data x to the left
child or the right child.

f(x,D,u,v) ≶ θ (2)

Thus, the algorithm learns two offset vectors (u,v) and a cri-
teria θ at each splitting node.

Since the goal is separating the data points x of differ-
ent classes to different child nodes, the objective function is

Fig. 2. Detection of hands using the RDF in the first stage.

designed to evalutate the separation using the learned offset
vectors and criteria as follows:

L(x,D,u,v, θ) = −
∑

c∈{l,r}

∑
h∈{0,1}

|xc|
|x|

p(h|c) log p(h|c)

(3)
where c and h are indexes for child nodes {l, r} and for
classes, respectively; |xc| denotes the number of data points
in the c child node; p(h|c) is the estimated probability of
being the class h at the child node c.

To learn offsets and a criteria, the algorithm randomly
generates possible candidates and selects the candidate with a
minimum loss L(·) as follows:

(u,v, θ) = argmin
(u,v,θ)

L(x,D,u,v, θ) (4)

Learning a split function at each splitting node is repeated
until the node satisfies the condition for a leaf node. The con-
dition is based on (1) the maximum depth of the tree, (2) the
probability distribution p(h|c), and (3) the amount of training
data |x| at the node. Specifically, it avoids too many splitting
nodes by limiting the maximum depth of the tree and by ter-
minating if the child node has a high probability for a class or
if the amount of remaining training data is too small.

At each leaf node, the algorithm stores the conditional
probability p(h|l) (probability of being each class h given
reaching the node l) for the prediction in a testing stage.

2.2. Testing

Using the learned RDF, the algorithm predicts the probability
of being a class for a new data x. The new data is classi-
fied to child nodes using the learned split function at each
splitting node until it reaches a leaf node. At the leaf node l,
the learned conditional probability pT (h|l) is loaded. These
steps are repeated for entire trees T in the forest T . Then, the
probabilities are averaged to predict the probability p(h|x) of
being a class h for the new data x.

p(h|x) =
1

|T |
∑
T∈T

pT (h|l) (5)

where |T | is the number of trees in the learned forest T .



(a) (b)

Fig. 3. Scores depending on the decision boundary on the
validation dataset. (a) Score of the RDF in the first stage. (b)
Score of the two-stage RDF with filtering in Section 2.3.

In the first stage, the first RDF is applied on an entire
depth map to compute a probability map. Then, the proba-
bility map is used to detect hands as shown in Fig. 2. In the
second stage, the second RDF processes the data points in
the detected regions to predict the probability of being each
class. The proposed two-stage RDF improves both accuracy
and efficiency by focusing on each task in each stage.

Decision boundaries are exhaustively searched with the
step size of 0.01 using the predicted probability maps of the
validation dataset as shown in Fig. 3. Although the most typ-
ical boundary is 0.5 for a probability map, we found that it is
not the best parameter. The selected boundaries are shown in
Table 1.

2.3. Modified bilateral filter

Before classifying a data x to a class h, modified bilateral
filter is applied to the predicted probability p(h|x) to make
the probability more robust. Since the probability p(h|x) is
predicted for each pixel independently, the probability is sta-
bilized by averaging using the probabilities of the data points
in close distance and similar intensity on the depth map.

Unlike typical bilateral filter whose weights are based on
the input image (in this case, the probability map) [23], the
weights in the modified bilateral filter are based on a separate
image, the depth map. The filtering is defined as follows:

p̃(h|x) =
1

w

∑
xi∈Ω

gr(|Dxi
−Dx|)gs(‖xi−x‖)p(h|xi) (6)

where Ω is the set of pixels within the filter’s radius and the
pre-defined depth difference; w is the normalization term,
w =

∑
xi∈Ω gr(|dI(xi) − dI(x)|)gs(‖xi − x‖); gr(·) and

gs(·) are the Gaussian functions for the depth difference r
and for the distance s from the data point x, respectively.
gr(r) = exp(− r2

2σ2
r
); gs(s) = exp(− s2

2σ2
s
). The parameters

in the filter were selected based on the experiments using val-
idation dataset. The selected parameters are as follows: the
maximum depth difference to be considered is 400mm. Both
standard deviations (σr and σs) are 100.

Fig. 5. Analysis of accuracy and efficiency.

3. EXPERIMENTAL EVALUATIONS

3.1. Dataset

We collected a new dataset using Microsoft Kinect v2 since
we were not able to find a publicly available dataset for hand-
object interaction with pixel-wise annotation. The newly
collected dataset consists of 27,525 pairs of depth maps and
ground truth labels from 6 people (3 males and 3 females)
interacting with 21 different objects. Also, the dataset in-
cludes the cases of one hand and both hands in a scene. The
dataset is separated into 19,470 pairs for training, 2,706 pairs
for validation, and 5,349 pairs for testing, respectively. The
dataset will be publicly available.

3.2. Results

The proposed method is analyzed by demonstrating the re-
sults on the dataset in Section 3.1. For the quantitative com-
parison of accuracy, we measure F1 score, precision, and re-
call as follows:

precision =
tp

tp + fp
, recall =

tp
tp + fn

F1 = 2× precision× recall
precision + recall

(7)

where tp, fp, and fn represent true positive, false positive, and
false negative, respectively. For the comparison of efficiency,
we measure the processing time using a machine with Intel
i7-4790K CPU and Nvidia GeForce GTX 770.

The proposed method is compared with the RDF-based
method in [1,19] and the fully convolutional networks (FCN)
in [24, 25] using only a depth map. The proposed method
is not compared with color-based methods since the charac-
teristics of depth sensors and color imaging sensors are quite
different. For example, a captured depth map using a depth
sensor does not vary depending on light condition. However,
a captured color image varies a lot depending on light condi-
tion. Thus, choosing the capturing environment affects the



Table 1. Quantitative comparison. The two boundaries for the proposed method are for each stage.
Method Score Processing time

Method Boundary Filter Precision Recall F1 score (ms)

RDF [1, 19] 0.50 - 0.381 0.912 0.537 6.7
RDF [1, 19] + Proposed in Sec. 2.2 0.78 - 0.545 0.727 0.623 6.7

FCN-32s [24, 25] - - 0.700 0.686 0.693 376
FCN-16s [24, 25] - - 0.680 0.722 0.701 376
FCN-8s [24, 25] - - 0.704 0.744 0.723 377

Proposed method
0.50, 0.50 - 0.592 0.774 0.671 8.9
0.50, 0.52 - 0.608 0.751 0.672 8.9
0.50, 0.52 11 × 11 0.629 0.756 0.687 10.7

(a) (b) (c) (d) (e)

Fig. 4. Visual comparison. (a) Ground truth label. (b) Result using RDF [1,19]. (c) Result using RDF [1,19] with the proposed
method in Section 2.2. (d) Result using FCN-8s [24, 25]. (e) Result using the proposed method. The results and ground truth
are visualized using different color channels for better visualization.

comparison of results using depth maps and color images.
Hence, we only compare the proposed method with the state-
of-the-art methods which can process using only depth maps.

Table 1 and Fig. 4 show quantitative results and visual re-
sults. The quantitative results show that the proposed method
achieves about 25% and 8% relative improvements in F1

score comparing to the RDF-based methods [1, 19] and
its combination with the proposed method in Section 2.2,
respectively. Comparing to the deep learning-based meth-
ods [24, 25], the proposed method achieves about 7% lower
accuracy, but processes in about 42 times shorter processing
time. Thus, deep learning-based methods can not be used

in real-time applications. Fig. 5 shows the comparison of
methods in accuracy and efficiency. The proposed method
achieves high accuracy in short processing time.

4. CONCLUSION

In this paper, we present two-stage RDF method for hand
segmentation for hand-object interaction using only a depth
map. The two stages consist of detecting hands and segment-
ing hands. The proposed method achieves high accuracy in
short processing time efficiently.
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